Spitfire List Web site and blog of anti-fascist researcher and radio personality Dave Emory.

News & Supplemental  

EU Buys Bees A Breather With Neonicotinoid Ban. Bees’ Goose Still Cookin’

In the quest to prevent a collapse in the global bee population, few approaches look more promising than simply banning the use of neonicotinoids in agriculture. To the EU’s credit, that’s exactly what was done last May when the EU passed a two-year ban on nicotinoid usage. For life on earth it was the bee’s knees, although the Life Sciences industry wasn’t entirely pleased:

World On a Plate
Hosted By The Guardian
London bee summit: pesticides or no pesticides?
The decision to frame the argument over neonicotinoids as pro- or anti-pesticide ignores the myriad options

Posted by Emma Bryce
Tuesday 28 January 2014 05.38 EST

In London last Friday, research scientists, chemical industry representatives, and journalists gathered for an open discussion session that concluded a three-day summit about the impact of neonicotinoid pesticides on honeybees. The result was a rich debate about the future use of these chemicals in agriculture, and implications for food production. But the efforts by some industry representatives to oversimplify the issue gave an otherwise intricate discussion the aura of a highly polarised one.

Neonicotinoids, which are widely used in Europe and America, are applied as a coating on seeds of crops like oilseed rape, maize, and sunflowers before they are planted, in this way protecting the plant from the start. But since this class of chemicals was linked with a decline in honey- and bumblebee health in 2012, followed by The European Commission’s imposed restrictions on specific uses of neonicontinoids soon after, they have been recognised more for the controversy they are associated with than anything else.

The science cannot definitively link neonicotinoid impact on individual pollinators to the widespread, overall decline of honeybee populations going on in Europe and America—the phenomenon labelled Colony Collapse Disorder. But a growing body of research on the subject is helping to cement the concerns of conservationists and scientists alike. Friday’s open discussion helped air those concerns, and yet, these were foregrounded against a controversial industry suggestion that if we stop using neonicotinoids, we essentially commit to a future of environmental ruin.

Speaking during his presentation on behalf of Bayer CropSciencethe company that makes imidacloprid, a neonicotinoid-based pesticide—environmental safety manager Richard Schmuck concluded his talk by stating that not only will food production dip dramatically if we stop using neonicotinoids, but that in an effort to make up for lowered production, countries will have to convert untouched wild land into crops and ‘import’ land from developing world countries. That will result in decreased biodiversity in Europe, America, and abroad, he said.

This rather extreme argument gives us just two options: a world with pesticides, or one without. But it misrepresents the approach of scientists and several conservation groups, and also contradicts what the chemical industries themselves say.

“I think it’s just an oversimplification by the industry to suit their message,” says Sandra Bell, nature campaigner at Friends of the Earth UK who was present at Friday’s meeting. “We’re not necessarily talking about banning every pesticide. We’re talking about minimising the use.” A speaker at the conference, University of Sussex Professor David Goulson, leader of one of the research groups that found neonicotinoid impacts on pollinators in 2012, agreed, adding that in order to grow enough food to feed an increasing world population, he recognised that chemicals would inevitably be part of the mix.

But the binary pesticide/no pesticide scenario overwrites a third option: using pesticides together with other controls. This is one aspect of integrated pest management (IPM), touted as a ‘common sense‘ approach to farming. “IPM is not a system that doesn’t use pesticides at all,” says Goulson, “but you try and minimise the pesticides and only ever use them responsibly, and as a last resort.” This ideal contrasts starkly with the current reality of crops that receive up to 22 pesticides at a time.

Rotation-cropping, organic farming, production of pest-resistant crops, and the use of state-funded agronomists to evaluate land and apply tailored pest control, were all raised as alternative management options during the open debate. Matthias Schott, a PhD student at the University of Giessen in Germany, who was there to present a poster about whether bees can sense neonicotinoids, suggested that in an ideal future, farmers would be given financial incentives for avoiding unnecessary pesticide use. Currently, he says, “there is no possibility for farmers to get pesticide-undressed seeds from the big companies. Therefore most agricultural land is exposed to insecticides.”

Bayer CropScience notes that alternatives are part of its portfolio, too. “We are very open to finding the right synthesis between integrated pest management and pesticides,” said Bayer’s global pollinator safety manager, Dr. Christian Maus, adding that it is necessary to establish a pesticide’s compatibility with IPM before it goes on the market. (He spoke on behalf of Richard Schmuck who was traveling and not available for an interview.)

The reality, of course, is that the pesticide/no pesticide split exists because there is no financial incentive right now to mould things differently. Alternative methods of pest control get little funding, and less research. “There’s no profit to be made for anyone who develops anything like that,” says Goulson. “So really, most research into how to farm is focused on high-tech solutions that can be sold by the people that manufacture them.”

The UK government’s seemingly tight-knit relationship with major chemical company Syngenta has only intensified the frustrations felt by those seeking alternatives. Industry-funded studies that find no neonicotinoid impact are a target for critics, and researchers highlight the general scarcity of peer-reviewed science on the subject.

Indeed, the confident conclusion in Schmuck’s presentation that a future without pesticides will amount to a loss of virgin land and biodiversity comes from an industry document that he cited in his talk. “It was a report by the agrochemical industry,” says Goulson. “I would strongly imagine it has no credibility whatsoever.” Yet, says Maus, everything Bayer CropScience publishes is independently regulated, whether it appears in a journal or not. “Our data are scrutinised,” he states.

The binary argument over neonicotinoids, no matter how superficial, denies the role that creativity has to play in finding other solutions. It perpetuates a threatening rhetoric in which the obvious pressure exists to stick with the status quo. “It’s about a lack of investment in the right kind of research,” says Bell. “If several years ago more money had been directed towards [alternatives] we might not be in this situation now.”

The two-year EU ban on neonicotinoids is going to be a critical story to watch but it’s also a difficult story. As the attendees to the London Bee Summit often pointed out, bee colony collapse is an incredibly complicated phenomena and nicotinoids are just one piece of the puzzle.

Another piece of the puzzle that adds uncertainty to the future of the neonicotinoid ban is the fact that Ettore Capri, the director of the Italy based OPERA Research Center – a pesticide industry-friendly think tank with a history of lobbying the EU for laxer neonicotinoid regulationsis also sitting on the EU’s pesticide panel. But it’s a big panel so we’ll see soon how the EU’s two year moratorium works out. Major nicotinoid manufacturers like Bayer and Syngenta may not like bans on neonicotinoids but the bees do. And in two years we’ll see who wins, Big Pesticide or the bees. Hint: It’s looking like it’s going to be a cliff-hanger/catastrophe sort of experience.

It Isn’t Easy Being a Bee
Neonicotinoids and lobbyists arent’t the only threats complicating the fate of the bees. If your a bee, mites might make for a really bad day. Or a new farm where your delicious prairie flowers used to be. Or both. It isn’t being a bee, and its getting harder:

International Business Times
How Can We Save Bees? 3 Possible Solutions To Combat Honeybee Decline

By Roxanne Palmer
on January 22 2014 11:38 PM

The pleasant buzz of the honeybee is going silent across the nation, and the globe. But not everyone is planning on letting bees bumble gently into that good night.

Since 2006, U.S. beekeepers have been seeing colony losses of an average of 33 percent a year, with a third of that attributed to colony collapse disorder, or CCD, the abrupt disappearance of worker bees from the hive.

Since no one can quite pin down a singular cause for the drop in bee populations across the globe, a nest of different approaches to saving the honeybee is springing up. Here are just a few of the measures that are being taken to try and save the bees:

Europe’s pesticide ban

Last April, the European Union voted to ban a certain class of pesticides called neonicotinoids….

Nevertheless, the EU ban went into effect this past December and will last for two years. Some scientists fear that European farmers may turn to more toxic pesticides in the wake of the ban, while others fear that crop pests may seize their advantage in the coming years. Only time will tell what the ban has wrought.

Combating the varroa mite

One of the other prime suspects in CCD is the varroa mite, a tiny arachnid that can hitch a ride back to beehives on the backs of foraging worker bees. Once it invades the hive, the mite lays its eggs in honeycombs alongside young bees. The mite brings its own hitchhikers into the colony as well: bacteria, viruses and other pathogens that can sweep through the bees.

Bayer scientists and bee researchers from Frankfurt University have come up with a way to nip the varroa mite right at the entrance of the hive, using a specially designed entryway for commercial hives. When bees pass through this varroa gate through small entry holes, they brush up against a coating of poison that targets the mite (it’s based on the same principle as a flea collar for dogs or cats).

In Australia, where the mite has yet to gain a foothold, scientist Denis Anderson has been searching for a chemical switch that would allow him to turn off the mite’s breeding cycle. But, Anderson says his work has been hampered by a lack of funds, according to the Sydney Morning Herald.

Filling empty bee bellies

Any hungry creature is vulnerable to illness and calamity, and bees are no exception. And the spread of modern agriculture, coupled with skyrocketing demand for biofuels, may be chewing up the bees’ sources of food.

American grasslands are rich in wildflowers, which provide food for a host of pollinating insects, including honeybees. But these grasslands are being destroyed as a study published last year in the Proceedings of the National Academy of Sciences found. The study found that 1.3 million acres of grassland and wetland were converted to cropland in the Dakotas, Nebraska and parts of Minnesota and Iowa between 2006 and 2011, at a rate not seen since before the Dust Bowl.

So even when neonicotinoids are banned, the farmers might just use something even worse, mites might infest your colony with bacteria and viruses, and, in the US, native bee habitat loss from 2006-2011 was at a rate not seen since the Dust Bowl! It’s sure not easy being bee, neonicotinoids or not.

Climate Change Is A Pest For The Bees Too. Technology Change Is More Of An Open Question.
And then there’s climate change. Climate change directly impacts bees by causing flowers to blossom when bees aren’t ready but it’s also the perfect storm for exacerbating virtually all of the other other bee-life stresses. For exaple, the loss of native bee habitats from the changing climate is going to be compounded by the increased demand for new farm land as climate change destroys arable land. And then there are the pests. As the climate changes, pests change too. Not only the types of pests but also the sheer volume of them. And when new pests arrive, and the old ones increase in number, the pest control strategies have to increase too.

Since there’s quite possibly going to be a lot more pests to control in the warming climates of the future, we should probably hope that the new pest control strategies required for that warmer future are easier on the bees that what we’re currently doing. Especially the pesticides use for major crops that attract bees. Crops like corn. High Fructose Corn Syrup isn’t the only corn-relate threat to the bees. +90% of corn grown in the US is covered with Bayer’s neonicotinoid products, along with a growing number of other crops. Quite simply, as the demand for pest control strategies grows with the changing climate, it’s going to be very hard to see how an outright ban on the use of neonicotinoids going to be possible without either a very big shift in how humanity feeds itself or the development of some new, effective pest-control technologies that can be used for staple foods.

All of these growing threats are a reminder that the challenges bees faced in the 20th century (the emergence of industrial agriculture) might be multiply in the 21st century. And since it’s looking increasingly like bee colonies are collapsing from the ‘death of a thousand cuts’ of many different environmental insults simultaneously it’s important to keep in mind that even a complete banning of nicotinoids still might not save the bees. A ban will be helpful, sure. But if we simply replace nicotinoids with other forms of bee-harming pest control strategies the bees and the rest of us might still be screwed.

And, sure, if humanity gets a lot better at sharing and not wasting food we could potentially shift to a organic farming strategies and minimize pesticide use around the world and still feed ourselves, but is that realistic? If not, that means a key challenge for the future of bee-friendly pest-control is going to ever-increasing specificity: you want tools that eliminate only the pest on the crop of interest and nothing else. Or at least nothing beneficial like bees.

So, for example, let’s say Monsanto was to develop a new form of GMO technology designed to ward off major pests that have developed immunity to Monsanto’s widely-used GMO-based corn with the BT Toxin and Monsanto’s Roundup weed-killer. That might be helpful, at least for a while. But new technology that kill newly resistant pests aren’t going to help humanity feed itself if those new technologies keep killing our six-legged friends:

Mother Jones
Is Monsanto Giving Up on GMOs?

—By Tom Philpott
| Wed Jan. 29, 2014 3:00 AM GMT

Is genetically modified seed giant Monsanto doing the unthinkable and moving away from genetically modified seeds?

It sounds crazy, but hear me out. Let’s start with Monsanto’s vegetable division, Seminis, which boasts it is the “largest developer and grower of vegetable seeds in the world.” Monsanto acknowledges Seminis has no new GM vegetables in development. According to a recent Wired piece, Seminis has has reverted instead to “good old-fashioned crossbreeding, the same technology that farmers have been using to optimize crops for millennia.”

Why? The article points to people’s growing avoidance of genetically modified foods. So far, consumers have shown no appetite to gobble up GM vegetables. (But that doesn’t mean people aren’t eating GMOs: Nearly all GMOs currently on the market are big commodity crops like corn and soy, which, besides being used as livestock feed, are regularly used as ingredients in processed food—think high-fructose corn syrup and soy oil.)

But the Wired piece also suggests a factor that doesn’t get nearly enough attention: GM technology doesn’t seem to be very good at generating complex traits like better flavor or more nutrients, the very attributes Monsanto was hoping to engineer into veggies. Here’s Wired:

Furthermore, genetically modifying consumer crops proved to be inefficient and expensive. [Monsanto exec David] Stark estimates that adding a new gene takes roughly 10 years and $100 million to go from a product concept to regulatory approval. And inserting genes one at a time doesn’t necessarily produce the kinds of traits that rely on the inter­actions of several genes. Well before their veggie business went kaput, Monsanto knew it couldn’t just genetically modify its way to better produce; it had to breed great vegetables to begin with. As Stark phrases a company mantra: “The best gene in the world doesn’t fix dogshit germplasm.” [Emphasis added.]

Okay, that’s vegetables. What about Monsanto’s core business, selling seeds for big industrial commodity crops like corn, soybeans, cotton, and alfalfa? Monsanto has come to dominate these markets with its Roundup Ready products, which are designed to withstand Monsanto’s flagship herbicide, and, for corn and cotton, its “Bt” products, which are engineered to produce a toxin found in Bacillus thuringiensis, an insect-killing bacteria. Does the company have lots of novel GM products in mind for this vast, lucrative sector?

Monsanto’s latest Annual R&D Pipeline Review, a document released earlier this month that showcases the company’s research into new product lines, foretells all kinds of impressive-sounding stuff. But a surprising amount of the company’s new research, even for its most lucrative crops like corn and soy, promise either new iterations of herbicide tolerance and Bt, or rely on classical breeding—not biotechnology.

The one major exception is a corn seed relying on a new kind of GMO: RNA interference (RNAi) technology, a recently discovered way to turn off certain genes, which Monsanto plans to engineer into crops to kill certain insects. According to Monsanto’s pipeline review, RNAi corn remains in the early “proof of concept” phase. In a recent piece, the New York Times’ Andrew Pollack reports that the technology is showing promise—Monsanto hopes to have it on the market “late this decade.” But it’s also generating controversy even in normally Monsanto-friendly regulatory circles because researchers have suggested it may kill beneficial insects like ladybugs along with targeted pests. Pollack points to this 2013 paper by Environmental Protection Agency scientists, which warned that the unfamiliar technology presented “unique challenges for ecological risk assessment that have not yet been encountered in assessments for traditional chemical pesticides.”

So RNAi corn may be coming—and could bring public relations and regulatory complications for Monsanto, not to mention unpredictable ecological consequences for the rest of us. But how much other GMO-based stuff does Monsanto have up its sleeve? According to the US Department of Agriculture’s Animal and Plant Health Inspection Service, the agency that oversees the rollout of new GM crops, not much. Of the 13 new GMOs APHIS is tracking, only 2 are from Monsanto: an alfalfa engineered to be more easily digestible as animal feed, and a soybean designed to withstand a harsh old herbicide called dicamba (a variation on the familiar Roundup Ready herbicide-tolerance theme).

Are you excited for Extra-Super-Corn with RNAi technology that kills ladybugs but not necessarily bees? Yes? No? Regardless, the super-pests like BT-Toxin-resistant corn rootworms and Roundup-resistant superweeds are already here munching away on super-corn’s roots so we probably shouldn’t be surprised if extra-super-corn featuring RNAi technology makes its way onto the farm sooner rather than later (and then proceed to wander around the ecosystem from there). The ladybugs probably aren’t very excited. They might prefer the smart-breeding strategy.

The bees, interestingly, might actually have reason to be excited by the development of this extra-super-corn, although not for the reason you might suspect: Nearly all corn grown in the US and Canada (and much of the world) is Monsanto’s BT toxin GMO corn (our present day super-corn). But that BT toxin only protects against key pests like the corn rootworm. Or at least it used to against them. So, barring a neonicotinoid ban in the US and Canada, even if this new RNAi technology temporarily thwarts the emergence of BT Toxin-resistant corn rootworms neonicotinoid products are still going to be used on corn and a growing number of other crops. No, the reason the bees might be breathing a bit of a sigh of relief is because RNAi technology might make mites a little less of pest for bees:

The New York Times
Genetic Weapon Against Insects Raises Hope and Fear in Farming

By ANDREW POLLACKJAN. 27, 2014

Scientists and biotechnology companies are developing what could become the next powerful weapon in the war on pests — one that harnesses a Nobel Prize-winning discovery to kill insects and pathogens by disabling their genes.

By zeroing in on a genetic sequence unique to one species, the technique has the potential to kill a pest without harming beneficial insects. That would be a big advance over chemical pesticides.

“If you use a neuro-poison, it kills everything,” said Subba Reddy Palli, an entomologist at the University of Kentucky who is researching the technology, which is called RNA interference. “But this one is very target-specific.”

But some specialists fear that releasing gene-silencing agents into fields could harm beneficial insects, especially among organisms that have a common genetic makeup, and possibly even human health. The controversy echoes the larger debate over genetic modification of crops that has been raging for years. The Environmental Protection Agency, which regulates pesticides, will hold a meeting of scientific advisers on Tuesday to discuss the potential risks of RNA interference.

“To attempt to use this technology at this current stage of understanding would be more naïve than our use of DDT in the 1950s,” the National Honey Bee Advisory Board said in comments submitted to the E.P.A. before the meeting, at the agency’s conference center in Arlington, Va.

RNA interference is of interest to beekeepers because one possible use, under development by Monsanto, is to kill a mite that is believed to be at least partly responsible for the mass die-offs of honeybees in recent years.

Monsanto has applied for regulatory approval of corn that is genetically engineered to use RNAi, as the approach is called for short, to kill the western corn rootworm, one of the costliest of agricultural pests. In another project it is trying to develop a spray that would restore the ability of its Roundup herbicide to kill weeds that have grown impervious to it.

Some bee specialists submitted comments saying they would welcome attempts to use RNAi to save honeybees. Groups representing corn, soybean and cotton farmers also support the technology.

“Commercial RNAi technology brings U.S. agriculture into an entirely new generation of tools holding great promise,” the National Corn Growers Association said.

Corn growers need a new tool. For a decade they have been combating the rootworm by planting so-called BT crops, which are genetically engineered to produce a toxin that kills the insects when they eat the crop.

Or at least the toxin is supposed to kill them. But rootworms are now evolving resistance to at least one BT toxin.

RNA interference is a natural phenomenon that is set off by double-stranded RNA.

DNA, which is what genes are made of, is usually double stranded, the famous double helix. But RNA, which is a messenger in cells, usually consists of a single strand of chemical units representing the letters of the genetic code.

So when a cell senses a double-stranded RNA, it acts as if it has encountered a virus. It activates a mechanism that silences any gene with a sequence corresponding to that in the double-stranded RNA.

Scientists quickly learned that they could deactivate virtually any gene by synthesizing a snippet of double-stranded RNA with a matching sequence.

Using RNAi in insects, at least for beetles, should be easier than in people. Beetles, including the corn rootworm, can simply eat the double-stranded RNA to set off the effect.

One way to get insects to do that is to genetically engineer crops to produce double-stranded RNA corresponding to an essential gene of the pest.

Various genetically engineered crops already harness RNAi to silence genes in the crop itself. These include soybeans with more healthful oil and a nonbrowning apple that appears close to federal approval. The technique has also been used to genetically engineer virus resistance into crops like papaya.

But generally those crops had been developed using methods to modify DNA that were known to work but were not understood at the time to involve RNAi. Monsanto’s new rootworm-killing corn is one of the first in which the crop has been engineered specifically to produce a double-stranded RNA, in this case to inactivate a gene called Snf7 that is essential for moving proteins around in the rootworm. Monsanto, which is based in St. Louis, hopes to have the corn, which it calls SmartStax Pro, on the market late this decade.

The double-stranded RNA could also be incorporated in sprays.

Monsanto is developing a spray that would shore up one of its biggest product lines — crops resistant to its Roundup herbicide. Farmers have grown them widely because they can spray Roundup to kill weeds without hurting the crop.

Roundup, known generically as glyphosate, works by inhibiting the action of a protein plants need to survive. But many weeds have evolved resistance to Roundup. Some of these weeds make so much of the protein that Roundup cannot inhibit it all.

Monsanto’s spray would use RNAi to silence the gene for that protein, reducing production of the protein and restoring the ability of Roundup to kill the weed.

Monsanto is also looking at putting RNA into sugar water fed to honeybees to protect them from the varroa mite. The way to fight the mite now is to spray pesticides that can also harm bees.

“We were trying to kill a little bug on a big bug,” said Jerry Hayes, the head of bee health at Monsanto.

Take a moment and note that this new double-stranded RNA technology can potentially be used in sprays or added to water. And that’s in addition to the ability to actually incorporate it into the genomes of living systems. It’s a reminder that there’s going to be a lot more potential uses for this new RNAi technology than just pest control.

Continuing…


If the RNAi is directed at a genetic sequence unique to the mite, the bees would not be harmed by ingesting it, while the mites would be killed once they attacked the bees. One field trial showed that this technique could help protect bees from a virus. Monsanto acquired Beeologics, a company developing the RNAi technology for bees. It bought at least two other companies pursuing agricultural applications of the technology. And it has paid tens of millions of dollars for patent rights and technology from medical RNAi companies like Alnylam Pharmaceuticals and Tekmira Pharmaceuticals.

But Monsanto is not alone. In 2012, Syngenta signed an agreement to work on RNAi sprays with Devgen, a Belgian biotech company, and later said that it had acquired all of Devgen for around $500 million.

Some scientists are calling for caution, however, In a paper published last year, two entomologists at the Department of Agriculture warned that because genes are common to various organisms, RNAi pesticides might hurt unintended insects.

One laboratory study by scientists at the University of Kentucky and the University of Nebraska, for instance, found that a double-stranded RNA intended to silence a rootworm gene also affected a gene in the ladybug, killing that beneficial insect.

Well that’s certainly an exciting maelstrom of technological possibilites. To summarize, almost all corn grown in the US and Canada is Monsanto’s “Bt corn” with the Bt toxin gene artificially added to kill the corn rootworms munching on the plants’ roots. But Bt corn might becoming somewhat irrelevant because the corn rootworm is already developing resistance to the Bt toxin. And the weeds that were under control using Roundup herbicide are now growing resistant to that too. But now Monsanto has a new trick that might save the Bt corn from both the corn rootworm and the super-weeds: The newly resistant corn rootworms and super-weeds are resistant because they have a new genes so if Monsanto can prevent the expression of those new genes both the Bt toxin and the Roundup can begin to work again. And this can be accomplished adding a new double-stranded RNA gene to the Bt corn that will silence the new gene in the corn rootworm beetle and then spraying the weeds with new double-stranded RNA targetting the new gene in the super-weeds. And this new RNAi technology can also be added to sprays or even water! So many possibilities…

And one of those possibilities includes feeding bees RNAi-laced sugar water so then the RNAi gets passed from the bee to the mite, allowing for less anti-mite pesticide use. This is actually a pretty big deal if this technology works! Although, as the above article pointed out, one of those big deals might be the disappearance of the ladybug due to the non-specific interactions between the RNA that was chosen to target a gene in the corn rootworm but also impacted one of the ladybug’s genes (a rather important gene for the ladybug, apparently).

So while it appears that this new RNAi technology has the possibility to provide new levels of specificity when targeting pests it’s still doesn’t appear to be specific enough to avoid collateral damage to the broader ecosystem. Which raises the question: what new unintended biological surprises are in store for the bees as RNAi technology flourishes and the number of different dsRNA strands getting added to plants, sprayed on the fields, or thrown into the water supply grows? The answer appears to be the standard answer to these types of questions: we don’t wnok what hos unintended surprises are going to be, but we’re going to find out! Yes, humanity is going to find out what surprises are in store for a species that casually dabbles in GMO technology because:
1. We can’t help ourselves.

2. It’s going to be increasingly difficult to feed the world without advanced farming methods and pest control strategies unless we significantly change how food resources are used (see reason 1).

3. We aren’t the neo-Luddites we need to be. And no, not the studid smashyburny kind of Luddite. The anti-thoughtless-implementation-of-technology Luddite:

Smithsonian Magazine
What the Luddites Really Fought Against
The label now has many meanings, but when the group protested 200 years ago, technology wasn’t really the enemy

By Richard Conniff

March 2011

n an essay in 1984—at the dawn of the personal computer era—the novelist Thomas Pynchon wondered if it was “O.K. to be a Luddite,” meaning someone who opposes technological progress. A better question today is whether it’s even possible. Technology is everywhere, and a recent headline at an Internet hu-mor site perfectly captured how difficult it is to resist: “Luddite invents machine to destroy technology quicker.”

Like all good satire, the mock headline comes perilously close to the truth. Modern Luddites do indeed invent “machines”—in the form of computer viruses, cyberworms and other malware—to disrupt the technologies that trouble them. (Recent targets of suspected sabotage include the London Stock Exchange and a nuclear power plant in Iran.) Even off-the-grid extremists find technology irresistible. The Unabomber, Ted Kaczynski, attacked what he called the “industrial-technological system” with increasingly sophisticated mail bombs. Likewise, the cave-dwelling terrorist sometimes derided as “Osama bin Luddite” hijacked aviation technology to bring down skyscrapers.

For the rest of us, our uneasy protests against technology almost inevitably take technological form. We worry about whether violent computer games are warping our children, then decry them by tweet, text or Facebook post. We try to simplify our lives by shopping at the local farmers market—then haul our organic arugula home in a Prius. College students take out their earbuds to discuss how technology dominates their lives. But when a class ends, Loyola University of Chicago professor Steven E. Jones notes, their cellphones all come to life, screens glowing in front of their faces, “and they migrate across the lawns like giant schools of cyborg jellyfish.”

That’s when he turns on his phone, too.

The word “Luddite,” handed down from a British industrial protest that began 200 years ago this month, turns up in our daily language in ways that suggest we’re confused not just about technology, but also about who the original Luddites were and what being a modern one actually means.

The word “Luddite” is simultaneously a declaration of ineptitude and a badge of honor. So you can hurl Luddite curses at your cellphone or your spouse, but you can also sip a wine named Luddite (which has its own Web site: www.luddite.co.za). You can buy a guitar named the Super Luddite, which is electric and costs $7,400. Meanwhile, back at Twitter, SupermanHotMale Tim is understandably puzzled; he grunts to ninatypewriter, “What is Luddite?”

Almost certainly not what you think, Tim.

Despite their modern reputation, the original Luddites were neither opposed to technology nor inept at using it. Many were highly skilled machine operators in the textile industry. Nor was the technology they attacked particularly new. Moreover, the idea of smashing machines as a form of industrial protest did not begin or end with them. In truth, the secret of their enduring reputation depends less on what they did than on the name under which they did it. You could say they were good at branding.

The Luddite disturbances started in circumstances at least superficially similar to our own. British working families at the start of the 19th century were enduring economic upheaval and widespread unemployment. A seemingly endless war against Napoleon’s France had brought “the hard pinch of poverty,” wrote Yorkshire historian Frank Peel, to homes “where it had hitherto been a stranger.” Food was scarce and rapidly becoming more costly. Then, on March 11, 1811, in Nottingham, a textile manufacturing center, British troops broke up a crowd of protesters demanding more work and better wages.

As the Industrial Revolution began, workers naturally worried about being displaced by increasingly efficient machines. But the Luddites themselves “were totally fine with machines,” says Kevin Binfield, editor of the 2004 collection Writings of the Luddites. They confined their attacks to manufacturers who used machines in what they called “a fraudulent and deceitful manner” to get around standard labor practices. “They just wanted machines that made high-quality goods,” says Binfield, “and they wanted these machines to be run by workers who had gone through an apprenticeship and got paid decent wages. Those were their only concerns.”

So if the Luddites weren’t attacking the technological foundations of industry, what made them so frightening to manufacturers? And what makes them so memorable even now? Credit on both counts goes largely to a phantom.

People of the time recognized all the astonishing new benefits the Industrial Revolution conferred, but they also worried, as Carlyle put it in 1829, that technology was causing a “mighty change” in their “modes of thought and feeling. Men are grown mechanical in head and in heart, as well as in hand.” Over time, worry about that kind of change led people to transform the original Luddites into the heroic defenders of a pretechnological way of life. “The indignation of nineteenth-century producers,” the historian Edward Tenner has written, “has yielded to “the irritation of late-twentieth-century consumers.”

The original Luddites lived in an era of “reassuringly clear-cut targets—machines one could still destroy with a sledgehammer,” Loyola’s Jones writes in his 2006 book Against Technology, making them easy to romanticize. By contrast, our technology is as nebulous as “the cloud,” that Web-based limbo where our digital thoughts increasingly go to spend eternity. It’s as liquid as the chemical contaminants our infants suck down with their mothers’ milk and as ubiquitous as the genetically modified crops in our gas tanks and on our dinner plates. Technology is everywhere, knows all our thoughts and, in the words of the technology utopian Kevin Kelly, is even “a divine phenomenon that is a reflection of God.” Who are we to resist?

The original Luddites would answer that we are human. Getting past the myth and seeing their protest more clearly is a reminder that it’s possible to live well with technology—but only if we continually question the ways it shapes our lives. It’s about small things, like now and then cutting the cord, shutting down the smartphone and going out for a walk. But it needs to be about big things, too, like standing up against technologies that put money or convenience above other human values. If we don’t want to become, as Carlyle warned, “mechanical in head and in heart,” it may help, every now and then, to ask which of our modern machines General and Eliza Ludd would choose to break. And which they would use to break them.

As the above article points out, contrary to their anti-technology reputation, the Luddites “just wanted machines that made high-quality goods… they wanted these machines to be run by workers who had gone through an apprenticeship and got paid decent wages. Those were their only concerns”. Technological progress is fine. But make it ethical. When you put aside the “smashing and burning” part of their history there’s a lot we can learn from the Luddites.

And as the above article also points out, technology during the time of the Luddite protests (1811-1817) was largely limited to the new machines of the Industrial Revolution. Today, we’re sort of like the Borg with just with one planet to assimilate. Our future is going to include a robust implementation of technology. And demand is going to be growing for any technology that can increase food and energy supplies in a world with shrinking resources, a changing climate, and an ever growing human demand. So when we’re looking for answers to the twin questions of “how do we protect the key species needed to feed ourselves protected from the practices of modern agriculture?” and “how do we feed ourselves?” the answer is most likely going to involve coming up with less damaging yet more powerful modern agricultural solutions. And that means better biotech. Maybe that will involve things like Bt corn and RNAi sprays, and Roundup. Hopefully not because it’s very unclear why we would want to introduce more stresses into the environment at this point if we can get by without it.

In The Future, Food Will Come Pre-Cooked. And Diseased.
But it’s hard to rule out biotech tools when we’re talking about future threats to the global food supply. And who knows, maybe the most environmentally efficacious solutions in the future really will involve utilizing a Rube Goldberg Machine of GMO tech combined with a concoction of other carefully selected pesticides, herbicides, and fertilizers. Hopefully all of that won’t be necessary and organics farming methods really will be adequate of the rest of the century, but we can’t really rule out the Rube Goldberg approach indefinitely. For starters, GMO technoloy is still pretty new and there’s no reason future generations of GMO technology have to carry with the same risks and dangers seen today.

For example, as the following article points out, future GMO technology may not involve introducing new genes into an organism at all but instead tweak existing genes. Also, depending on how climate change plays out, doing everything we possibly can to increase crop yields using traditional farming methods may not be an option in our warmer, more populated future with with extreme temperature spikes. Many plants can handle higher average temperatures but not when those higher averages are arrived at through a series of extreme temperature spikes. And that’s the future climate we’re looking at in many parts of the globe: one with a lot more extremely hot days that physiologically shock plants. Bees aren’t the only species humanity needs to survive that can die a death of a thousand environmental cuts. Our food in the future just might need all the help it can get:

MIT Technology Review
Why We Will Need Genetically Modified Foods
Biotech crops will have an essential role in ensuring that there’s enough to eat.

By David Rotman on December 17, 2013

Signs of late blight appear suddenly but predictably in Ireland as soon as the summer weather turns humid, spores of the funguslike plant pathogen wafting across the open green fields and landing on the wet leaves of the potato plants. This year it began to rain in early August. Within several weeks, late blight had attacked a small plot of potatoes in the corner of the neat grid of test plantings at the headquarters of Teagasc, Ireland’s agricultural agency, in Carlow.

It’s the second year of what are scheduled to be three-year field trials. But even if the results from next year are similarly encouraging, Teagasc has no intention of giving farmers access to the plant, which was developed by researchers at Wageningen University in the Netherlands. Such genetically engineered crops remain controversial in Europe, and only two are approved for planting in the EU. Though Mullins and his colleagues are eager to learn how blight affects the GM potatoes and whether the plants will affect soil microbes, distributing the modified plant in Ireland is, at least for now, a nonstarter.

Nevertheless, the fields of Carlow present a tantalizing picture of how genetically modified crops could help protect the world’s food supply. Blight-resistant potatoes would be one of the first major foods genetically engineered to incorporate defenses against plant diseases, which annually destroy some 15 percent of the world’s agricultural harvest. Despite the heavy use of fungicides, late blight and other plant diseases ruin an estimated fifth of the world’s potatoes, a food increasingly grown in China and India. Stem rust, a fungal disease of wheat, has spread through much of Africa and the Arabian Peninsula and is now threatening the vast growing regions of central and south Asia, which produce some 20 percent of the world’s wheat. Bananas, which are a primary source of food in countries such as Uganda, are often destroyed by wilt disease. In all these cases, genetic engineering has the potential to create varieties that are far better able to withstand the onslaught.

GM potatoes could also lead to a new generation of biotech foods sold directly to consumers. Though transgenic corn, soybeans, and cotton—mostly engineered to resist insects and herbicides—have been widely planted since the late 1990s in the United States and in a smattering of other large agricultural countries, including Brazil and Canada, the corn and soybean crops go mainly into animal feed, biofuels, and cooking oils. No genetically modified varieties of rice, wheat, or potatoes are widely grown, because opposition to such foods has discouraged investment in developing them and because seed companies haven’t found ways to make the kind of money on those crops that they do from genetically modified corn and soybeans.

With the global population expected to reach more than nine billion by 2050, however, the world might soon be hungry for such varieties. Although agricultural productivity has improved dramatically over the past 50 years, economists fear that these improvements have begun to wane at a time when food demand, driven by the larger number of people and the growing appetites of wealthier populations, is expected to rise between 70 and 100 percent by midcentury. In particular, the rapid increases in rice and wheat yields that helped feed the world for decades are showing signs of slowing down, and production of cereals will need to more than double by 2050 to keep up. If the trend continues, production might be insufficient to meet demand unless we start using significantly more land, fertilizer, and water.

Climate change is likely to make the problem far worse, bringing higher temperatures and, in many regions, wetter conditions that spread infestations of disease and insects into new areas. Drought, damaging storms, and very hot days are already taking a toll on crop yields, and the frequency of these events is expected to increase sharply as the climate warms. For farmers, the effects of climate change can be simply put: the weather has become far more unpredictable, and extreme weather has become far more common.

One advantage of using genetic engineering to help crops adapt to these sudden changes is that new varieties can be created quickly. Creating a potato variety through conventional breeding, for example, takes at least 15 years; producing a genetically modified one takes less than six months. Genetic modification also allows plant breeders to make more precise changes and draw from a far greater variety of genes, gleaned from the plants’ wild relatives or from different types of organisms. Plant scientists are careful to note that no magical gene can be inserted into a crop to make it drought tolerant or to increase its yield—even resistance to a disease typically requires multiple genetic changes. But many of them say genetic engineering is a versatile and essential technique.

“It’s an overwhelmingly logical thing to do,” says Jonathan Jones, a scientist at the Sainsbury Laboratory in the U.K. and one of the world’s leading experts on plant diseases. The upcoming pressures on agricultural production, he says, “[are] real and will affect millions of people in poor countries.” He adds that it would be “perverse to spurn using genetic modification as a tool.”

It’s a view that is widely shared by those responsible for developing tomorrow’s crop varieties. At the current level of agricultural production, there’s enough food to feed the world, says Eduardo Blumwald, a plant scientist at the University of California, Davis. But “when the population reaches nine billion?” he says. “No way, José.”

Failed promises

The promise that genetically modified crops could help feed the world is at least as old as the commercialization of the first transgenic seeds in the mid-1990s. The corporations that helped turn genetically engineered crops into a multibillion-dollar business, including the large chemical companies Monsanto, Bayer, and DuPont, promoted the technology as part of a life science revolution that would greatly increase food production. So far it’s turned out, for a number of reasons, to have been a somewhat empty promise.

To be sure, bioengineered crops are a huge commercial success in some countries. The idea is simple but compelling: by inserting a foreign gene derived from, say, bacteria into corn, you can give the plant a trait it wouldn’t otherwise possess. Surveys estimate that more than 170 million hectares of such transgenic crops are grown worldwide. In the United States, the majority of corn, soybeans, and cotton planted have been engineered with a gene from the soil bacterium Bacillus thuringensis—Bt—to ward off insects or with another bacterial gene to withstand herbicides. Worldwide, 81 percent of the soybeans and 35 percent of the corn grown are biotech varieties. In India, Bt cotton was approved more than a decade ago and now represents 96 percent of the cotton grown in the country.

Yet it’s not clear whether that boom in transgenic crops has led to increased food production or lower prices for consumers. Take corn, for example. In the United States, 76 percent of the crop is genetically modified to resist insects, and 85 percent can tolerate being sprayed with a weed killer. Such corn has, arguably, been a boon to farmers, reducing pesticide use and boosting yields. But little of U.S. corn production is used directly for human food; about 4 percent goes into high–fructose corn syrup and 1.8 percent to cereal and other foods. Genetically modified corn and soybeans are so profitable that U.S. farmers have begun substituting them for wheat: around 56 million acres of wheat were planted in 2012, down from 62 million in 2000. As supply fell, the price of a bushel of wheat rose to nearly $8 in 2012, from $2.50 in 2000.

So far, the short list of transgenic crops used directly for food includes virus-resistant papaya grown in Hawaii, Bt sweet corn recently commercialized in the United States by Monsanto, and a few varieties of squash that resist plant viruses. That list could be about to grow, however. The Indonesian agricultural agency expects to approve a blight-resistant potato soon, and J.?R. Simplot, an agricultural supplier based in Boise, Idaho, is hoping to commercialize its own version by 2017. Monsanto, which abandoned an attempt to develop GM wheat in 2004, bought a wheat-seed company in 2009 and is now trying again. And Cornell researchers are working with collaborators in India, Bangladesh, and the Philippines, countries where eggplant is a staple, to make an insect-resistant form of the vegetable available to farmers.

These bioengineered versions of some of the world’s most important food crops could help fulfill initial hopes for genetically modified organisms, or GMOs. But they will also almost certainly heat up the debate over the technology. Opponents worry that inserting foreign genes into crops could make food dangerous or allergenic, though more than 15 years of experience with transgenic crops have revealed no health dangers, and neither have a series of scientific studies. More credibly, detractors suggest that the technology is a ploy by giant corporations, particularly Monsanto, to peddle more herbicides, dominate the agricultural supply chain, and leave farmers dependent on high-priced transgenic seeds. The most persuasive criticism, however, may simply be that existing transgenic crops have done little to guarantee the future of the world’s food supply in the face of climate change and a growing population.

The first generation of insect-resistant and herbicide-tolerant crops offer few new traits, such as drought tolerance and disease resistance, that could help the plants adapt to changes in weather and disease patterns, acknowledges Margaret Smith, a professor of plant breeding and genetics at Cornell University. Nonetheless, she says there is no valid reason to dismiss the technology as plant scientists race to increase crop productivity. Scientists are “facing a daunting breeding challenge,” Smith says. “We will need a second generation of transgenic crops. It would be a mistake to rule out this tool because the first products didn’t address the big issues.”

Developing crops that are better able to withstand climate change won’t be easy. It will require plant scientists to engineer complex traits involving multiple genes. Durable disease resistance typically requires a series of genetic changes and detailed knowledge of how pathogens attack the plant. Traits such as tolerance to drought and heat are even harder, since they can require basic changes to the plant’s physiology.

Is genetic engineering up to the task? No one knows. But recent genomic breakthroughs are encouraging. Scientists have sequenced the genomes of crops such as rice, potatoes, bananas, and wheat. At the same time, advances in molecular biology mean that genes can be deleted, modified, and inserted with far greater precision. In particular, new genome engineering tools known as Talens and Crispr allow geneticists to “edit” plant DNA, changing chromosomes exactly where they want.

Exact Edits

The workshop adjacent to the rows of greenhouses at the edge of Cornell’s campus in Ithaca, New York, smells musty and damp from the crates of potatoes. It is less than a mile from the university’s molecular biology labs, but what you see are wooden conveyer belts, wire screens, and water hoses. Walter De Jong is sorting and sizing harvested potatoes as part of a multiyear effort to come up with yet a better variety for the region’s growers. Boxes are filled with potatoes—some small and round, others large and misshapen. Asked what traits are important to consumers, he smiles slyly and says, “Looks, looks, looks.”

The question of how he feels about efforts to develop transgenic potatoes is not as easily answered. It’s not that De Jong is opposed to genetic engineering. As a potato breeder, he’s well versed in conventional methods of introducing new traits, but he also has a PhD in plant pathology and has done considerable research in molecular biology; he knows the opportunities that advanced genetics opens up. In the northeastern United States, a variety of potato is optimized for about a 500-mile radius, taking into account the length of the growing season and the type of weather in the area. Climate change means these growing zones are shifting, making crop breeding like solving a puzzle in which the pieces are moving around. The speed offered by genetic modification would help. But, De Jong says dismissively, “I don’t expect to use [transgenic] technology. I can’t afford it.”

“It’s a curious situation,” he says. Scientists at public and academic research institutions have done much of the work to identify genes and understand how they can affect traits in plants. But the lengthy testing and regulatory processes for genetically modified crops, and the danger that consumers will reject them, mean that only “a handful of large companies” can afford the expense and risk of developing them, he says.

But De Jong suddenly becomes animated when he’s asked about the newest genome engineering tools. “This is what I have been waiting my whole career for,” he says, throwing his hands up. “As long as I have been a potato scientist, I’ve wanted two things: a sequenced potato genome and the ability to modify the genome at will.” Across campus, De Jong also runs a molecular biology lab, where he has identified the DNA sequence responsible for red pigment in potato tubers. Soon, it could be possible to precisely alter that sequence in a potato cell that can then be grown into a plant: “If I had a white potato I wanted to turn red, I could just edit one or two nucleotides and get the color I want.” Plant breeding “is not the art of shuffling genes around,” De Jong explains. “Basically, all potatoes have the same genes; what they have is different versions of the genes—alleles. And alleles differ from one another in a few nucleotides. If I can edit the few nucleotides, why breed for [a trait]? It’s been the holy grail in plant genetics for a long time.”

One implication of the new tools is that plants can be genetically modified without the addition of foreign genes. Though it’s too early to tell whether that will change the public debate over GMOs, regulatory agencies—at least in the United States—indicate that crops modified without foreign genes won’t have to be scrutinized as thoroughly as transgenic crops. That could greatly reduce the time and expense it takes to commercialize new varieties of genetically engineered foods. And it’s possible that critics of biotechnology could draw a similar distinction, tolerating genetically modified crops so long as they are not transgenic.

Dan Voytas, director of the genome engineering center at the University of Minnesota and one of Talens’s inventors, says one of his main motivations is the need to feed another two billion people by the middle of the century. In one of his most ambitious efforts, centered at the International Rice Research Institute in Los Baños, the Philippines, he is collaborating with a worldwide network of researchers to rewrite the physiology of rice. Rice and wheat, like other grains, have what botanists call C3 photosynthesis, rather than the more complex C4 version that corn and sugarcane have. The C4 version of photosynthesis uses water and carbon dioxide far more efficiently. If the project is successful, both rice and wheat yields could be increased in regions that are becoming hotter and drier as a result of climate change.

Rewriting the core workings of a plant is not a trivial task. But Voytas says Talens could be a valuable tool—both to identify the genetic pathways that might be tweaked and to make the many necessary genetic changes.

The pressure to help feed the growing population at a time when climate change is making more land marginal for agriculture is “the burden that plant biologists bear,” Voytas says. But he’s optimistic. Over much of the last 50 years, he points out, crop productivity has made repeated gains, attributable first to the use of hybrid seeds, then to the new plant varieties introduced during the so-called Green Revolution, and “even to the first GM plants.” The introduction of the new genome engineering tools, he says, “will be another inflection point.”

If he’s right, it might be just in time.

Heat Wave

For agronomists, plant breeders, and farmers, it’s all about yield—the amount a crop produces in a hectare. The remarkable increases in crop yields beginning in the middle of the 20th century are the main reason that we have enough food to go from feeding three billion people in 1960 to feeding seven billion in 2011 with only a slight increase in the amount of land under cultivation. Perhaps most famously, the Green Revolution spearheaded by the Iowa-born plant pathologist and geneticist Norman Borlaug substantially increased yields of wheat, corn, and rice in many parts of the world. It did so, in part, by introducing more productive crop varieties, starting in Mexico and then in Pakistan, India, and other countries. But for at least the past decade, increases in the yields of wheat and rice seem to have slowed. Yields of wheat, for example, are growing at roughly 1 percent annually; they need to increase nearly 2 percent annually to keep up with food demand over the long term. Agricultural experts warn that yields will have to improve for other crops as well if we are to feed a rapidly growing population—and yet rising temperatures and other effects of global climate change will make this tougher to achieve.

David Lobell, a professor of environmental earth system science at Stanford University, has a calm demeanor that belies his bleak message about how global warming is already affecting crops. The effects of climate change on agriculture have been widely debated, but recently Lobell and his collaborators have clarified the projections by combing through historical records of weather and agricultural production. They found that from 1980 to 2008, climate change depressed yields of wheat and corn; yields still rose during that time, but overall production was 2 to 3 percent less than it would have been if not for global warming. This has held true across most of the regions where corn and wheat are grown.

The finding is startling because it suggests that global warming has already had a significant impact on food production and will make an even bigger difference as climate change intensifies. “Anything that causes yield [growth] to flatten out is a concern,” says Lobell. And while overall yields of wheat and corn are still increasing, he says, “climate change becomes a concern long before you have negative yield trends.”

Even more disturbing, Lobell and his collaborator Wolfram Schlenker, an economist at Columbia University, have found evidence that in the case of several important crops, the negative effect of global warming is more strongly tied to the number of extremely hot days than to the rise in average temperatures over a season. If that’s true, earlier research might have severely underestimated the impact of climate change by looking only at average temperatures.

Schlenker’s calculations show steady increases in corn and soybean yields as the temperature rises from 10 °C into the 20s—but at around 29 °C for corn and 30 °C for soybeans, the crops are “hit hard” and yields drop dramatically. In subsequent work, Lobell showed that hot days were doing far more damage to wheat in northern India than previously thought.

A surprising and troubling detail of the research, says Schlenker, is that crops and farmers don’t seem to have adapted to the increased frequency of hot days. What surprised me most and should inform us going forward,” he says, “is that there has been tremendous progress in agricultural breeding—average yields have gone up more than threefold since the 1950s—but if you look at sensitivity to extreme heat, it seems to be just as bad as it was in the 1950s. We need to have crops that are better at dealing with hot climates.” During the heat wave that hit much of the United States in 2012, he says, yields of corn were down 20 percent, and “2012 is not that unusual a year compared to what the climate models predict will be a new normal pretty soon.”

It’s possible that plants are simply hardwired to shut down at temperatures above 30 °C. Indeed, Schlenker says he’s not convinced that crops can be engineered to adapt to the increased frequency of hot days, though he hopes he’s wrong. Likewise, Lobell wants his work to better define which aspects of climate change are damaging crops and thus help target the needed genetic changes. But, like Schlenker, he is unsure whether genetics can provide much of an answer.

In California’s Central Valley, one of the world’s most productive agricultural areas, UC Davis’s Blumwald acknowledges that scientists have “never bred for stresses” like drought and heat. But he aims to change that. Inserting a combination of genes for tolerance to heat, drought, and high soil salinity into rice and other plants, Blumwald is creating crops that have at least some advantages during extreme weather conditions, particularly during key times in their growth cycle.

The challenge is to avoid reducing yields under good growing conditions. So Blumwald has identified a protein that activates the inserted genes only under adverse conditions. “There’s no cure for drought. If there’s no water, the plant dies. I’m not a magician,” he says. “We just want to delay the stress response as long as possible in order to maintain yields until the water comes.”

Note that the California farm belt is experiencing its driest season on record.

Continuing…


Daily Bread

Wheat is also emblematic of the struggles facing agriculture as it attempts to keep up with a growing population and a changing climate. Not only have the gains in yield begun to slow, but wheat is particularly sensitive to rising temperatures and is grown in many regions, such as Australia, that are prone to severe droughts. What’s more, wheat is vulnerable to one of the world’s most dreaded plant diseases: stem rust, which is threatening the fertile swath of Pakistan and northern India known as the Indo-Gangetic Plain. Conventional breeding techniques have made remarkable progress against these problems, producing varieties that are increasingly drought tolerant and disease resistant. But biotechnology offers advantages that shouldn’t be ignored.

“Climate change doesn’t change [the challenge for plant breeders], but it makes it much more urgent,” says Walter Falcon, deputy director of the Center on Food Security and the Environment at Stanford. Falcon was one of the foot soldiers of the Green Revolution, working in the wheat-growing regions of Pakistan and in Mexico’s Yaqui Valley. But he says the remarkable increases in productivity achieved between 1970 and 1995 have largely “played out,” and he worries about whether the technology–intensive farming in those regions can be sustained. He says the Yaqui Valley remains highly productive—recent yields of seven tons of wheat per hectare “blow your mind”—but the heavy use of fertilizers and water is “pushing the limits” of current practices. Likewise, Falcon says he is worried about how climate change will affect agriculture in the Indo-Gangetic Plain, the home of nearly a billion people.

Asked whether transgenic technology will solve any of these problems, he answers, “I’m not holding my breath,” citing both scientific reasons and opposition to GM crops. But he does expect advances in genetic technologies over the next decade to create wheat varieties that are better equipped to withstand pests, higher temperatures, and drought.

It is quite possible that the first and most dramatic of the advances will come in adapting crops to the shifting patterns of disease. And as Teagasc’s Ewen Mullins puts it, “if you want to study plant diseases, you come to Ireland.”

A hundred kilometers from the idyllic fields in Carlow, Fiona Doohan, a plant pathologist at University College Dublin, is developing wheat varieties that stand up to local diseases and trying to understand how plant pathogens might evolve with climate change. At the school’s agricultural experiment station, she uses growing chambers in which the concentration of carbon dioxide can be adjusted to mimic the higher levels expected in 2050. The experiments have yielded a nasty surprise. When wheat and the pathogens that commonly afflict it are put in the chamber with the increased levels of carbon dioxide, the plant remains resistant to the fungus. But when both are separately grown through several generations under 2050 conditions and then placed together, Doohan says, the plants “crash.” This suggests, ominously, that plant pathogens might be far better and faster than wheat at adapting to increased carbon dioxide.

What a wonderful surprise: So are researchers finding that heat shocks are going to be particularly damaging to staple crops like wheat. But on top of that, when they studied the impact of a 2050 climate on wheat they found that the wheat could adapt to the higher CO2 levels but wheat’s pathogens adapted faster and better to the new conditions. And when the two were allowed to adapt separately and then combined, the plants were overwhelmed by their more-rapidly-adapting pest. It’s a nasty surprise that highlights the grim reality that today’s pests can effectively become tomorrow’s super-pests simply by adapting more rapidly to the oncoming stresses climate change. And since pests almost always adapt more rapidly than the their more complex target organisms to changing conditions and since pests are bound to move into new regions as the climate warms, it sounds like we could be in for a global tidal wave of super-pests preying on some very stressed out plants.

That’s not a very fun sounding scenario but it is what it is. It’s also our future. Or might be. And as the above author points out, if the impact of climate change on crop yields really is worse then we’ve been led to believe, committing to a GMO-free future may be a hard sell decades from if when crops are dying at greater-than-expected rates. And if the situation is looking so dire that global hunger could be looming over the horizon, why, as one of the researchers in the article pointed out, do we have this situation?

“It’s a curious situation,” he says. Scientists at public and academic research institutions have done much of the work to identify genes and understand how they can affect traits in plants. But the lengthy testing and regulatory processes for genetically modified crops, and the danger that consumers will reject them, mean that only “a handful of large companies” can afford the expense and risk of developing them, he says.

Leaving the development of GMO tools that could be needed to avoid a mass calamity over the next century in the hands of a handful of large corporations like Monsanto and Bayer with long track-record of prioritizing profit-maximization is, well, strange. And it’s especially strange when the future biotech tools that we all might need in the future could, if misused, also lead to mass calamity. As the above article pointed out, existing GMO crops have been quite profitable, but they haven’t really done much to increase the food supply. It raises the question of whether or not the profit-motive is going to be at all adequate to incentivize the development of tools we’re going to need when that development is conducted by a handful of profit-maxizing giants. And if not, are there other options?:

Slate
Let’s Make Genetically Modified Food Open-Source
It will help fight climate change and stick one in Monsanto’s eye.
By Frederick Kaufman

Not too long ago, popular wisdom ran that molecular biologists were going to save billions of people from starvation by genetically engineering crops resistant to flood, freeze, and drought; crops that could blossom from desiccated soil and bloom in salty sand; crops that could flourish despite an atmosphere saturated with carbon dioxide and rays of sunshine riddled with radiation. A waterless seed was the next killer app.

But despite the hopes of Borlaug and the hype of Enright, genetically modified crops as we know them have as a general rule increased agriculture’s reliance on a system of expensive “inputs”—agro-speak for the proprietary seeds and herbicides that have brought untold profits to multinationals such as Monsanto and Dow. The reputation of transgenic crops has tanked, as what was once a harbinger of green technology is now commonly perceived as a source of genetic pollution and has thus become anathema for many environmentalists.

The GMO story has become mired in the eco-wrecking narrative of industrial agriculture, and that is too bad for those who understand the real risks of climate change and discern our desperate need for innovation. And while the blue-sky hype of a genetically secured food supply has not become a reality, there have been a few breakthroughs. Even as climate change has increased the prevalence of many plant diseases, the new science can take credit for genetic inoculations that saved Hawaii’s papaya business. It’s also led to flood-resistant rice, created by Pamela Ronald of the University of California–Davis.

Of course, the party-line foodie dare not say anything positive about GMOs, at risk of being labeled a stooge of the foodopolists. And it’s true: Monsanto, Dow, Bayer, and Pioneer are not interested in GMO innovations that might help the bottom billion—molecular ramp-ups of crops like cassava, millet, or teff. They are not interested in low-insecticide eggplants that would help clean urban water supplies in South Asia. There’s not enough money in it for them.

But the truth is that GM products aren’t just necessary to help create an agriculture system that can survive in a post–climate-change world—they may actually help ameliorate global warming. As David Zilbermans, professor of agriculture and resource economics at the University of California–Berkeley has noted, “Adoption of herbicide tolerant varieties enabled transition to minimal tillage techniques, which reduced the greenhouse gas effect of agriculture equivalent to hundreds of thousands of cars annually. GMOs make it possible to produce food on less land, reducing the incentive of converting wild land into agricultural land.”

So the question looms: How can we harness the possible positives of GMOs without lining the pockets of the pharmers?

GMO agriculture relies on the relatively new science of bioinformatics (a mixture of bio- and information science), which means that DNA sequences look a lot more like software code than a vegetable garden. And if Monsanto is the Microsoft of food supply—raking in the rent on bites instead of bytes—perhaps the time has come for the agricultural equivalent of Linux, the open-source operating system that made computer programming a communal effort.

Open-source GMO is a new idea for food justice activists, who have been concentrating their efforts on depleting Monsanto’s market share through consumer advocacy and political reform. Labeling laws for genetically modified organisms in the retail foodstream are about to land in statehouses across the country. But genetic modification does not equal Monsanto and Pioneer. The time has come to separate the dancer from the dance and admit that it is possible to be against big-agriculture and for scientific advancement.

Open-source is the quickest way to undermine proprietary rights to food molecules, those rights that guarantee profit streams for transnationals while condemning the earth to a monocultural future of agriculture with no regard for agroecology. For the surest way to sabotage Monsanto is not to label but to sap its income. Already, a number of biotech pioneers have followed the open-source examples of Apache and Wikipedia. The database of the human genome mapping project has been free since it was published in 2003. The genetic map of rice has been made available at no charge to researchers worldwide. And the Food and Agriculture Organization of the United Nations has made its “Access to Global Online Research in Agriculture” a transnational paradigm of free-flowing information. Agricultural researchers in developing countries need not pay a penny to review all the latest life science research published in more than 3,000 academic journals.

Everyone interested in global food knows that agriculture has had a largely negative impact on global warming, but few have recognized that legal reform of food-related intellectual property laws can help ensure a path to a more ecologically secure future. No doubt, biological “input” is far more complex than computer “input,” but the idea of a swarm of bio-hackers bringing down Monsanto and Dow is too delightful to dismiss. Throw climate change into the picture, and the stakes are simply too high for continuing the status quo of patented food. Neither information nor lunch may want to be free, but eventually we will need to get around to the business of sequencing proteins that have less to do with quarterly profits and more to do with centuries of ecological abuse. And those will be the only inputs that matter when the big heat hits.

Excited for your open source GMO future? Monsanto, Dow, and Bayer probably aren’t very excited by the idea. The bees might be if it leads to faster development of bee-friendly pest control technologies. But at the end of the day, if we want to ensure that resources are invested into developing the kinds of biotech tools that humanity needs – as opposed to the biotech tools that corporations find most profitable – something new is going to have to be tried if humanity wants to avoid having its golden goose cooked in the coming decades.

But when we’re swimming in a sea of confusing biotech-speculation and calamitous prognostications, let’s keep in mind that there are some very simple solutions to ensuring global food supplies in the future and they mostly revolve around needed less of it. For instance, we could go a long way towards saving the bees (and a lot of hungry people) if we could just stop eating the birds and their four-legged friends. Not interested yet? Just wait. Or we could cut down on the total farmland needed by no longer throwing so much food away for no good reason . Or we could maybe just stop throwing substances like neonicotinoids on so many crops and use them only as a last resort. Or all of the above.

And yet, as we’ve seen, seemingly simple solutions like banning neonicotinoids to save something as crucial as bees can be a surprisingly complicated process. Part of this complication is due to the fact that answering questions like “how much are neonicotinoids contributing bee deaths” is a really hard question to answer. But another part of this complication is due to the fact that saving the bees often involve helping the pests and harming crops. And in the case of Bt corn, it’s a particularly profitable crop that’s mostly used for cattle and fuel making it an awful win-lose situation with a lot of money involved. When it comes to saving the bees, Big Ag potentially has to make major shifts in how it does what it does and giants like Bayer and Monsanto stand to lose billions if sustainable farming becomes the norm. From a financial standpoint there are heavy prices to be paid by many powerful private entities if we achieve the bee-friendly future too soon. And yet, from a profit standpoint, the last decade has been when Big Ag can most afford to change its ways. And from a biological/ecological standpoint, there might never be a be a better chance than right now to clean up our food supply and put the planet on a sustainable, bee-friendly food future – yes, even nowbecause it’s only getting worse from here. For the moment, we can still afford to shift to a sustainable, bee-friendly world and ditch whatever GMO tech or any other industrial agriculture practices that are just not going to be viable going forward (no matter how profitable they may be). We can still do all that feed ourselves because so much of what we grow is used for things other than food and so much food is wasted (which also happens to be much of what gets sprayed with neonicotinoids).

But in the future, as populations grow and the climate changes, the food-supply flexibility of today may no longer exist. Just keeping the world fed when using next-generation high-yield GMO foods could become a problem if climate change is significantly worse than expected (or about as bad as expected). The short-term costs of ditching Franken-corn and its GMO-food-friends may be significantly higher under many feasible future scenarios so when we’re pondering “what do we do about the bees?” we should keep in mind that this is one of this situations where waiting and hoping for technical advances to fix the problem in the future might be a really bad, and expensive approach.

So from a profit standpoint, there’s a corporate profit vs bees dynamic at the moment. In the long-term, however, it’s either the choice of both the bees and humanity living together in harmony of sorts or waaaaaaaaay fewer flowering species and a big loss of biodiversity. Life could go on, and the patented domestic super-bees would probably survive through human intervention, but a big swathe of life would disappear if the native bees go. The longer we put off shifting to a bee-friendly agricultural paradigm, the more costly and dire those short-term costs are going to be when we do finally make the bee-friendly shift.

At present, the current best technological hope for the bees seems to be the ant-mite RNAi sugar-water. That’s kind of scary. While we may not want to ban the use of GMO technology outright (because we may not have that option decades from now), it’s a pretty big sign of civilizational failure if we have to rely on a set of tools that perpetually create super-pests just to feed ourselves. That’s insane. It would be like pointlessly pumping cattle full of antibiotics just to create super-bugs for us to eat. Only a crazy species would do that. So it’s doesn’t bode well or us that RNAi sprays are the new hot thing to fix that problems with the previous new hot things. At least there’s the neonicotinoid ban in the EU now but we’ll see how long it lasts. The ban is certainly one of the best signs we’ve seen in while. And maybe the neonicotinoids really are innocent, or at least not as culpable for the bee colony collapses as presumed. As we’ve seen, there are plenty of other culprits. But regardless of which combination of factors is killing the bees, the disappearance of the bees is something to prepare for if this trend continues because the bee is the super-canary in the coal mine: if it dies, a whole bunch of other things die too. Forever.

While this may sound grim, keep in mind that there do exist more controversial solutions that ensure our demands for food don’t take collapse parts of the biosphere but, while simple and elegant, may not be for everyone: For instance, instead of genetically modifying the rest of the biosphere to suit our needs, how about we make a few small tweaks to ourselves? Specifically, we need to make our hair much more moth and algae-friendly. That’s it. No other changes and…dinner is served! Maybe there’s a nice RNAi shampoo that can do the trick. No? How about a lovely hat that feeds you. Still no? Luddite. Hmmm… there’s a certain advanced technique that could feed the world and help control pests simultaneously and everyone can play a role in implementing this technique. But, really, most of you will probably prefer the hat. Still no?! Well, there always the meatlover’s option.

Discussion

57 comments for “EU Buys Bees A Breather With Neonicotinoid Ban. Bees’ Goose Still Cookin’”

  1. @Pterrafractyl–

    Note that both Bayer and BASF are evolved from I.G. Farben and are both integral, foundational elements of the Bormann capital network.

    http://spitfirelist.com/for-the-record/ftr-411-the-bayer-facts-ig-farben-and-the-politics-of-murder/

    Best,

    Dave

    Posted by Dave Emory | May 19, 2016, 9:02 pm
  2. Housekeeping note: Comments 1-50 available here

    Posted by Pterrafractyl | May 20, 2016, 5:53 pm
  3. @Dave: Here’s another interesting twist to Bayer’s bid for Monsanto: On the same day Monsanto made that bid, the EU was scheduled to vote on whether or not glyphosate, the key ingredient to Monsanto’s wildly used Roundup pesticide that Monsanto’s GMO seeds are designed to be withstand, should be banned in the EU or be relicensed for another nine years. And as the article below points out, while Germany’s agriculture minister was in favor or relicensing the pesticide, the SPD reversed course and called for a ban due to both environmental and possible health concerns. So at the same time Bayer and BASF are poised to gobble up Monsanto and its spun off pieces, one of the crown jewels of Monsanto could get banned in the EU:

    Deutsche Welle

    Glyphosate: Will Europe ban controversial weed killer?

    The EU is about to vote on whether to relicense the world’s most used pesticide, as debate continues to rage over whether it poses a risk of cancer.

    Date 18.05.2016
    Author Ruby Russell

    European Union member states are expected to vote Thursday on whether to relicense glyphosate, as protestors gathered in Brussels on Wednesday calling for the weed killer to be banned.

    Glyphosate is the world’s most heavily used herbicide and a major tool for modern industrial farming. But it is also suspected of causing cancer in humans.

    Glyphosate’s current license for use in the EU expires in June. If granted, a new license would sanction its continued use in Europe for another nine years.

    While there are strong arguments that the weed killer poses a serious risk to biodiversity, the big question hanging over the extension is whether it is safe for humans who eat the crops that have been treated with the herbicide.

    Mixed findings on cancer risk

    In March last year, the World Health Organization’s International Agency for Research on Cancer (IARC) released a study finding that glyphosate was “probably carcinogenic to humans”.

    But just days ahead of the EU vote this week, United Nation’s Food and Agriculture Organization (FAO) and the World Health Organization’s (WHO) Meeting on Pesticide Residues (JMPR) concluded that “glyphosate is unlikely to pose a carcinogenic risk to humans from exposure through the diet.”

    The IARC’s scientific study looks at how hazardous the chemical compound is, while the JMPR conclusion is based on a review of available literature and assesses the actual risk posed by ingesting the low quantities of glyphosate that make it onto consumers’ plates.

    The European Glyphosate Task Force (GTF), a consortium of companies backing the continued use of the herbicide welcomed the JMPR conclusion.

    “As the GTF we welcome the constant reviews of glyphosate and reiterate that a high level scrutiny only contributes to higher protection for consumers and operators,” said GTF chair Richard Garnett.

    Conflict of interest?

    But environmentalists have questioned the JMPR’s independence. Greenpeace said this week that two of the scientists involved in JMPR conclusions had close ties to the International Life Sciences Institute, which receives funding from companies including Monsanto and Dow, which manufacture glyphosate.

    Glyphosate was developed by Monsanto, which has also developed genetically modified crops that are resistant to the herbicide.

    Greenpeace added that scientists involved in the assessment by the European Food Standards Authority in November last year that said glyphosate was probably not carcinogenic, had refused to be named.

    “The agencies contradicting the WHO cancer warning seem to either rely on officials who prefer not to be named, or lack a watertight policy to protect their impartiality,” Greenpeace EU food policy director Franziska Achterberg said in a press release.

    German government split

    Which way Thursday’s vote will go may depend on Germany’s position – which remains unclear.

    Germany had been expected to vote in favor to the extension. But last week, the Social Democratic Party (SPD), the junior partner in Germany’s coalition government, said it was against relicensing the herbicide.

    “That glyphosate has negative environmental impacts is proven… whether or not glyphosate also has health concerns is controversial,” German environment minister Barbara Hendricks, (of the SPD) said, adding: “For good reason, in Germany and in Europe we follow a precautionary principal.”

    Agriculture minister Christian Schmidt reacted with irritation, saying he had “absolutely no sympathy for the backwards roll on the extended authorization of glyphosate.”

    If the German government cannot agree, it will have to abstain from Thursday’s vote, making a majority vote in favor of the extension unlikely. That could leave the decision in the hands of the European Commission.

    A YouGov poll published in April this year found that 70 percent of Germans were against the reapproval of glyphosate.

    Room for compromise?

    France, Italy and the Netherlands have expressed opposition to the use of glyphosate, with the UK expected to be among those voting in favor of its extension.

    In the US, Monsanto faces lawsuits from agricultural workers who claim to have developed non-Hodgkin lymphoma as a result of long-term exposure to Roundup, Monsanto’s glyphosate-based weed killer.

    “If the German government cannot agree, it will have to abstain from Thursday’s vote, making a majority vote in favor of the extension unlikely. That could leave the decision in the hands of the European Commission.”
    Yes, Germany’s government found itself unable to arrive at a conclusion and abstained from the vote. So what happened with the vote? It didn’t happen:

    Reuters

    UPDATE 1-EU delays vote on weed-killer glyphosate licence amid cancer row

    * Glyphosate widely used in farming pesticides

    * If no deal by June 30, product to be phased out of market

    * Debate focuses on scientific evidence over health risks (Adds reactions from industry, green groups)

    By Alissa de Carbonnel
    Thu May 19, 2016 12:10pm EDT

    BRUSSELS, May 19 The European Union on Thursday delayed a vote on renewing sales approval for the pesticide glyphosate, used in Monsanto’s weed-killer Roundup, amid a transatlantic row over whether it may cause cancer.

    Experts from the EU’s 28 nations had been due to vote on a proposal to extend by nine years licensing of the herbicide, widely used by farmers and gardeners.

    EU sources said the delay was due to opposition in France and Germany, which have big farming and chemicals industries.

    Without their support, the European Commission lacks the majority it needs for a binding vote: “Since it was obvious that no qualified majority would have been reached, a vote was not held,” a Commission spokeswoman said.

    The EU executive had hoped for a decision to stop the clock ticking on a six-month phase-out period for glyphosate products when the existing authorisation lapses at the end of June.

    In response to opposition, it had already postponed a vote in March and shortened the licence to nine years from 15. The new proposal would ban some products because of the substances they combine with glyphosate, which could add to risks.

    The banned list of so-called co-formulants includes POE-tallowamine, which is no longer sold in glyphosate-containing pesticides in Germany.

    Germany had planned to abstain from voting because ministries run by different parties in the ruling coalition remain at odds, a government spokesman told Reuters.

    Last month, the European Parliament recommended that glyphosate should only be approved for another seven years, and should not be used by the general public.

    As the debates were continuing in Brussels, German chemicals group Bayer made an unsolicited takeover bid for U.S. seeds company Monsanto, for which the regulatory controversy over glyphosate has been one of a number of recent problems.

    “This delay undermines the credibility of the European regulatory process and threatens to put European farmers … and chemical industries at a competitive disadvantage,” Monsanto’s vice president of global regulatory and governmental affairs, Philip Miller, said.

    If no decision is reached to extend the licence, a spokesman said the company could not rule out seeking legal remedy.

    “If no decision is reached to extend the license, a spokesman said the company could not rule out seeking legal remedy.”
    So on the same day the EU was scheduled to vote on whether or not to ban glyphosate, the vote gets called off in large part due to conflicting German government opinion and Bayer makes a surprise, unsolicited bid for Monsanto. And the current license expires June 30. And all that means there’s going to be quite a flurry of lobbying and negotiating over the next month, along with threats of lawsuits like Monsanto made. On top of all that, France’s powerful agriculture industry appears to want to see glyphosate banned.

    So it’s going to be pretty interesting to see how this plays out. With over two thirds of Europeans and 70 percent of Germans wanting to see glyphosate banned, companies like Bayer are going to have quite a public relations problem on their hands. And a lobbying problem it would seem. And while it doesn’t seem like announcing a desire to buy Monsanto is going to help Bayer’s public image, it sure could help with the government lobbying! Or maybe not. We’ll see. It’s not like Bayer and BASF are new to the PR game.

    Posted by Pterrafractyl | May 20, 2016, 5:55 pm
  4. Posted by Pixxare | May 20, 2016, 9:26 pm
  5. With the US celebrating Independence Day by blowing up a large volume time explosives, it’s probably as good a day as any to note that the very first US patent (Patent X000001), was a patent for refining potash, the potassium-containing compound that serves as a key natural resource for making everything from fertilizer to gunpowder. Neat.

    It’s also worth noting that the potash is only found a relative handful of locations around the globe, which means it’s basically a global oligopoly, like oil, but with a smaller number of suppliers. So small that when Russia’s Uralkali broke away from a partnership with Belaruskali in 2103, it was seen as a global potash game changer that was going to bring on a global price war. Which is what happened.

    So as Americans celebrate Independence Day with a potash-fueled food and fireworks, it’s worth noting that our ability to blow things up and eat fertilizer-grown food while doing it is tied to a resource that’s controlled by a global oligopoly in them midst of a price war with itself. Could be worse:

    Reuters

    Potash output cuts seen hindering industry’s long-term recovery

    WINNIPEG, Manitoba | By Rod Nickel
    Thu Jun 2, 2016 6:13am EDT

    North America’s big potash miners have doubled down on a production cut strategy they hope will lift the fertilizer’s price from a near decade low, even as some investors warn this threatens their long-term profitability and props up weaker rivals.

    Shares of Potash Corp of Saskatchewan and Mosaic Co, major players who have trimmed output when prices weakened, are down nearly 50 percent from a year earlier following their most recent production cuts.

    Some suggest they should take a page from Saudi Arabia’s oil strategy, boosting production to drive out higher-cost competitors, with the goal of maximizing profit over time.

    “Lower prices would keep the new capacity out. That’s more sustainable than trying to artificially maintain the price by closing (low-cost) facilities,” said Bryan Agbabian, head of agricultural equities at Allianz Global Investors, which has avoided potash company shares for three years.

    While this new approach would hurt share values in the near term, it would also begin a healthy industry transition, he added.

    Potash Corp, which confirmed it is sticking with its tighter supply strategy, surprised many in January by closing its eastern Canadian mine about a year after opening it.

    “The reason it works well is the resources in potash are more concentrated than any other commodity,” Chief Executive Jochen Tilk said in an interview, noting that a few players in the industry have access to the majority of resources.

    Mosaic CEO Joc O’Rourke told analysts last month that the company will continue to cut production when markets soften. Mosaic spokesman Ben Pratt said there has been no change in strategy since then and executives were unavailable for further comment.

    Canpotex Ltd, the export potash sales agency for Potash, Mosaic and Agrium Inc, earlier this year reduced first-half export plans by 1.5 million tonnes, representing nearly 8 percent of its estimated 2015 sales.

    But industry watchers noted this controlled-supply strategy helps European mines operated by K&S AG and ICL Israel Chemicals continue to produce potash at some of the highest costs in the business.

    ICL is cutting operating costs in Spain, and plans to convert its United Kingdom facility to a specialty form of potash within two years. Those mines serve Europe’s niche markets that sometimes yield premiums, said ICL Chief Executive Stefan Borgas.

    “We don’t lose any money anywhere,” Borgas said.

    DIFFERENT APPROACH FOR OIL, IRON ORE

    Commodity producers in other sectors, notably the Organization of the Petroleum Exporting Countries (OPEC), have embraced short-term price pain in a bid to close down higher-cost rivals, though competitors such as U.S. shale producers have proved more resilient than expected.

    Still, Brent crude is up one-third in 2016 after bottoming out in January at its lowest price since 2003.

    Likewise, spot iron ore has gained 15 percent in 2016, helped partly by a war of attrition waged by the biggest suppliers that has driven out some higher-cost competitors.

    Wholesale U.S. Midwest potash prices, however, have fallen this year by one-quarter to their lowest since mid-2007, according to industry data compiled by NPK Fertilizer Advisory Service.

    To be sure, some think high-cost potash mines are too small, even if closed, to cure low prices by themselves, as seen by Intrepid Potash Inc’s plan to idle its largest mine in July.

    The 2013 breakup of a marketing alliance between Uralkali and Belaruskali increased competition, but didn’t significantly weed out competitors.

    Belaruskali, the second-biggest potash miner, does not feel pressured to cut output just because higher-cost producers are hanging on, said the company’s director general, Ivan Golovaty.

    Andrey Ilyin, chief financial officer of EuroChem, said the company is still planning on adding to global capacity by building two Russian potash mines by 2018.

    “We have no ready answer as to which marketing strategy is best,” he said. “Thankfully we do not have to decide on it today.”

    “Some suggest they should take a page from Saudi Arabia’s oil strategy, boosting production to drive out higher-cost competitors, with the goal of maximizing profit over time.”

    It sure sounds like the potash market’s biggest players are considering an OPEC-style potash price war designed to drive higher-cost competition out of business. The more prices implode, the more Big Potash’s appetite to cannibalize itself grows.

    So that should hold down prices for things like fertilizer and fireworks, although don’t be surprised if your fireworks still get pricier. Most of the US’s fireworks are made in China and there’s a firework industry labor shortage and not just in China. There’s a glut of potash due to a small cartel’s global civil-war, but not enough people to take the assemble the fireworks because it’s done by hand to avoid accidents, although robots will eventually take over.

    So while you’re lighting that fuse, take a moment to keep in mind that someone working in a factory probably made your explosive toy by hand. Probably for too little pay. If there’s an appropriate way to enhance the spirit of America’s Independence Day, it would be to push for a global campaign to ensure fireworks are made by well-paid people working in safe conditions. You can’t truly celebrate an Independence Day without the spirit of Labor Day.

    Yes, it might increase the price of the fireworks, but if we’re going to have a potash cartel price war, isn’t this one of the best times to push for global firework worker protections and rights? It’s always a good time to push for firework worker rights, but a potash price war just makes it a better time. And what’s a better way for the US to celebrate its national sovereignty than a global campaign for pyrotechnical worker rights and protections? Shouldn’t that be part of Independence Day? It isn’t just in the spirit of Independence Day but enhances it because it’s something we’re free to do and it’s the right thing to do. Let’s do that.

    Posted by Pterrafractyl | July 4, 2016, 3:12 pm
  6. Here’s some good news/bad news for the bees. First, the good news: after seven species of Hawaiian bees were added to the endangered species list back in September, the first bee species ever added to the list, the rusty patch bumblebee was placed on the Fish and Wildlife Service’s endangered species list in the few weeks of the Obama administration, making it the first bee in the continental US to make it onto the list.

    The bad news, as you probably guessed, is, of course, the Trump administration:

    Mother Jones

    Now Trump’s Going After the Bumblebees
    The administration just delayed endangered status for a bumblebee species that’s on the brink of extinction.

    Tom Philpott
    Feb. 10, 2017 5:54 PM

    First, it was puppies. Now Trump is going after bees.

    Just weeks before leaving office, the Obama administration’s Fish and Wildlife Service placed the rusty patched bumblebee on the endangered species list—the first bee species to gain that status in the continental United States. Just weeks after taking office, the Trump administration temporarily reversed that decision. (See great pictures of this charismatic pollinator here..)

    The official announcement of the delay cites a White House memo, released just after Trump’s inauguration, instructing federal agencies to freeze all new regulations that had been announced but not yet taken effect, for the purpose of “reviewing questions of fact, law, and policy they raise.” The Fish and Wildlife Service, which oversees the endangered species list, acted just in the nick of time in delaying the bumble bee’s endangered status—it was scheduled to make its debut on the list on February 10.

    Rebecca Riley, a senior attorney for the Natural Resources Defense Council, told me the move may not be a mere procedural delay. “We don’t think this is just a freeze—it’s an opportunity for the administration to reconsider and perhaps revoke the rule entirely,” she said.

    Why would the Trump administration want to reverse Endangered Species Act protections for this pollinating insect? After all, the rusty patched bumble bee has “experienced a swift and dramatic decline since the late 1990s,” with its abundance having “plummeted by 87 percent, leaving small, scattered populations in 13 states,” according to a December Fish and Wildlife Service notice. And it’s not just pretty to look at—the Fish and Wildlide Services notes that like other bees, rusty patched bumblebees “pollinate many plants, including economically important crops such as tomatoes, cranberries and peppers,” adding that bumblebees are “especially good pollinators; even plants that can self-pollinate produce more and bigger fruit when pollinated by bumble bees.”

    The answer may lie in the Fish and Wildlife Service’s blunt discussion of pesticides as a threat to this bumblebee species. Like commercial honeybees, bumblebees face a variety of threats: exposure to pesticides, disease, climate change, and loss of forage. FWS cited all of those, noting that “no one single factor is likely responsible, but these threats working together have likely caused the decline.” But it didn’t mince any words about neonicotinoids, a class of insecticides widely used on US farm fields.

    Neonics, as they’re known, are a highly contentious topic. They make up the globe’s most widely used insecticide class, with annual global sales of $2.6 billion, dominated by agrichemical giants Syngenta and Bayer (which is currently in the process of merging with Monsanto). They have been substantially implicated in the declining health of honeybees and other pollinators, birds, and waterborne animals. The European Union maintains a moratorium on most neonic use in farming, based on their threat to bees. The US Environmental Protection Agency is currently in the middle of a yearslong reassessment of the risk they pose to bees and other critters.

    Here is what the Fish and Wildlife Service wrote about neonics in the context of the rusty patched bumblebee:

    Neonicotinoids have been strongly implicated as the cause of the decline of bees, in general, and for rusty patched bumble bees, specifically. The introduction of neonicotinoid use and the precipitous decline of this bumble bee occurred during the same time. Neonicotinoids are of particular concern because they are systemic chemicals, meaning that the plant takes up the chemical and incorporates it throughout, including in leaf tissue, nectar and pollen. The use of neonicotinoids rapidly increased when suppliers began selling pre-treated seeds. The chemical remains in pre-treated seeds and is taken up by the developing plants and becomes present throughout the plant. Pollinators foraging on treated plants are exposed to the chemicals directly. This type of insecticide use marked a shift to using systemic insecticides for large-scale, preemptive treatment.

    Note also that of the 13 states that still harbor scattered rusty patched bumblebee populations, four—Illinois, Indiana, Iowa, and Ohio—are in the US Corn Belt, where corn and soybean crops from neonic-treated seeds are common.

    The NRDC’s Riley noted that as the EPA reassess neonics, it is obligated to consider the insecticides’ impact on endangered species. If the rusty patched bumblebee makes it onto the list, that would place an endangered species that’s clearly harmed by neonics directly into the region where the lucrative chemicals are most widely used—possibly forcing it to restrict neonic use in those areas. It’s worth noting that the man Trump chose to lead the EPA transition team, Myron Ebell, works for the industry-funded Competitive Enterprise Institute, which runs a website, SafeChemicalPolicy.org, that exists to downplay the health and ecological impacts of chemicals. More on that here.

    The NRDC’s Riley noted that as the EPA reassess neonics, it is obligated to consider the insecticides’ impact on endangered species. If the rusty patched bumblebee makes it onto the list, that would place an endangered species that’s clearly harmed by neonics directly into the region where the lucrative chemicals are most widely used—possibly forcing it to restrict neonic use in those areas. It’s worth noting that the man Trump chose to lead the EPA transition team, Myron Ebell, works for the industry-funded Competitive Enterprise Institute, which runs a website, SafeChemicalPolicy.org, that exists to downplay the health and ecological impacts of chemicals. More on that here.”

    Yep, since the EPA is obligated to consider the impact of insecticides’ on endangered species, the the impact of neonicotinoids on at least one species of bee will have to be considered when the EPA reassesses neonicotinoids. Which is exactly why we should probably expect the Trump administration’s “freeze” of the rusty patched bumblebee’s endangered status to turn into a revocation. Well, maybe not exactly why we should expect it. The Trump administration’s endless desire to kiss corporate asses and general disdain for life on earth might also have something to do with it. Regardless of the reason, it’s hard to see how first bee in the continental US to make it onto the endangered species list is going to stay on that list in an era when the GOP controls all branches of the federal government and four of the states where the rusty patched bumblebee is still found are in the “US Corn Belt”. Especially given the endangered status of the endangered species list:

    Salon

    Republicans are creating legislation that would weaken Endangered Species Act
    Republicans want to significantly weaken the Endangered Species Act in the name of business profits

    Matthew Rozsa
    Friday, Feb 17, 2017 11:30 AM CST

    The Republican Party’s war on nature rolls on.

    The Senate Environment and Public Works Committee held hearings on Wednesday to discuss legislation that would weaken the Endangered Species Act, according to The Washington Post. These hearings occurred even as the House Natural Resources Committee is considering an outright repeal the bill, with Committee Chairman Rob Bishop claiming that its main reason for existing is “to control the land.” Senate Republicans argue that the bill violates states’ rights and property rights, as well as limits economic growth in drilling, mining, and agriculture.

    The Endangered Species Act, which was passed in 1973 as a way of protecting animals and plants in danger of extinction, was described in congressional testimony by Defenders of Wildlife CEO Jamie Rappaport Clark as very successful. “For more than 40 years, the ESA has been successful, bringing the bald eagle, the American alligator, the Stellar sea lion, the peregrine falcon, and numerous other species back from the brink of extinction,” Clark said. “Based on data from the (Fish and Wildlife Service), the ESA has saved 99 percent of listed species from extinction.”

    Since taking office, the Trump administration attempted (then aborted) a “witch hunt” against climate change staffers in the energy department, removed climate change information from the White House website, halted grants and contracts from the Environmental Protection Agency and appointed a climate change denier to lead the EPA.

    “The Senate Environment and Public Works Committee held hearings on Wednesday to discuss legislation that would weaken the Endangered Species Act, according to The Washington Post. These hearings occurred even as the House Natural Resources Committee is considering an outright repeal the bill, with Committee Chairman Rob Bishop claiming that its main reason for existing is “to control the land.” Senate Republicans argue that the bill violates states’ rights and property rights, as well as limits economic growth in drilling, mining, and agriculture.”

    Well, so long rusty patched bumblebee. And everyone else on the list.

    Presumably they all had it coming. Or maybe that’s us.

    Posted by Pterrafractyl | February 17, 2017, 4:45 pm
  7. Here’s something to keep in mind as climate change increasingly threatens global food supplies while simultaneously increasing the prevalence of diseases that will require health immune systems to fight off: while it’s often thought that one of the benefits of having more CO2 in the atmosphere is that at least plants will have more carbon to grow, there’s a potentially significant downside to that enhanced growth. According to researchers looking into the largely unexamined relationship between atmospheric CO2 levels and plant nutrition, that extra CO2 appears to be screwing up plant metabolism and slowing turning plants into low-nutrient junk food:

    Politico

    The great nutrient collapse

    The atmosphere is literally changing the food we eat, for the worse. And almost nobody is paying attention.

    By HELENA BOTTEMILLER EVICH
    09/13/2017 05:03 AM EDT

    Irakli Loladze is a mathematician by training, but he was in a biology lab when he encountered the puzzle that would change his life. It was in 1998, and Loladze was studying for his Ph.D. at Arizona State University. Against a backdrop of glass containers glowing with bright green algae, a biologist told Loladze and a half-dozen other graduate students that scientists had discovered something mysterious about zooplankton.

    Zooplankton are microscopic animals that float in the world’s oceans and lakes, and for food they rely on algae, which are essentially tiny plants. Scientists found that they could make algae grow faster by shining more light onto them—increasing the food supply for the zooplankton, which should have flourished. But it didn’t work out that way. When the researchers shined more light on the algae, the algae grew faster, and the tiny animals had lots and lots to eat—but at a certain point they started struggling to survive. This was a paradox. More food should lead to more growth. How could more algae be a problem?

    Loladze was technically in the math department, but he loved biology and couldn’t stop thinking about this. The biologists had an idea of what was going on: The increased light was making the algae grow faster, but they ended up containing fewer of the nutrients the zooplankton needed to thrive. By speeding up their growth, the researchers had essentially turned the algae into junk food. The zooplankton had plenty to eat, but their food was less nutritious, and so they were starving.

    Loladze used his math training to help measure and explain the algae-zooplankton dynamic. He and his colleagues devised a model that captured the relationship between a food source and a grazer that depends on the food. They published that first paper in 2000. But Loladze was also captivated by a much larger question raised by the experiment: Just how far this problem might extend.

    “What struck me is that its application is wider,” Loladze recalled in an interview. Could the same problem affect grass and cows? What about rice and people? “It was kind of a watershed moment for me when I started thinking about human nutrition,” he said.

    In the outside world, the problem isn’t that plants are suddenly getting more light: It’s that for years, they’ve been getting more carbon dioxide. Plants rely on both light and carbon dioxide to grow. If shining more light results in faster-growing, less nutritious algae—junk-food algae whose ratio of sugar to nutrients was out of whack—then it seemed logical to assume that ramping up carbon dioxide might do the same. And it could also be playing out in plants all over the planet. What might that mean for the plants that people eat?

    What Loladze found is that scientists simply didn’t know. It was already well documented that CO2levels were rising in the atmosphere, but he was astonished at how little research had been done on how it affected the quality of the plants we eat. For the next 17 years, as he pursued his math career, Loladze scoured the scientific literature for any studies and data he could find. The results, as he collected them, all seemed to point in the same direction: The junk-food effect he had learned about in that Arizona lab also appeared to be occurring in fields and forests around the world. “Every leaf and every grass blade on earth makes more and more sugars as CO2 levels keep rising,” Loladze said. “We are witnessing the greatest injection of carbohydrates into the biosphere in human history?[an] injection that dilutes other nutrients in our food supply.”

    He published those findings just a few years ago, adding to the concerns of a small but increasingly worried group of researchers who are raising unsettling questions about the future of our food supply. Could carbon dioxide have an effect on human health we haven’t accounted for yet? The answer appears to be yes—and along the way, it has steered Loladze and other scientists, directly into some of the thorniest questions in their profession, including just how hard it is to do research in a field that doesn’t quite exist yet.

    IN AGRICULTURAL RESEARCH, it’s been understood for some time that many of our most important foods have been getting less nutritious. Measurements of fruits and vegetables show that their minerals, vitamin and protein content has measurably dropped over the past 50 to 70 years. Researchers have generally assumed the reason is fairly straightforward: We’ve been breeding and choosing crops for higher yields, rather than nutrition, and higher-yielding crops—whether broccoli, tomatoes, or wheat—tend to be less nutrient-packed.

    In 2004, a landmark study of fruits and vegetables found that everything from protein to calcium, iron and vitamin C had declined significantly across most garden crops since 1950. The researchers concluded this could mostly be explained by the varieties we were choosing to grow.

    Loladze and a handful of other scientists have come to suspect that’s not the whole story and that the atmosphere itself may be changing the food we eat. Plants need carbon dioxide to live like humans need oxygen. And in the increasingly polarized debate about climate science, one thing that isn’t up for debate is that the level of CO2 in the atmosphere is rising. Before the industrial revolution, the earth’s atmosphere had about 280 parts per million of carbon dioxide. Last year, the planet crossed over the 400 parts per million threshold; scientists predict we will likely reach 550 parts per million within the next half-century—essentially twice the amount that was in the air when Americans started farming with tractors.

    If you’re someone who thinks about plant growth, this seems like a good thing. It has also been useful ammunition for politicians looking for reasons to worry less about the implications of climate change. Rep. Lamar Smith, a Republican who chairs the House Committee on Science, recently argued that people shouldn’t be so worried about rising CO2 levels because it’s good for plants, and what’s good for plants is good for us.

    But as the zooplankton experiment showed, greater volume and better quality might not go hand-in-hand. In fact, they might be inversely linked. As best scientists can tell, this is what happens: Rising CO2 revs up photosynthesis, the process that helps plants transform sunlight to food. This makes plants grow, but it also leads them to pack in more carbohydrates like glucose at the expense of other nutrients that we depend on, like protein, iron and zinc.

    In 2002, while a postdoctoral fellow at Princeton University, Loladze published a seminal research paper in Trends in Ecology and Evolution, a leading journal, arguing that rising CO2 and human nutrition were inextricably linked through a global shift in the quality of plants. In the paper, Loladze complained about the dearth of data: Among thousands of publications he had reviewed on plants and rising CO2, he found only one that looked specifically at how it affected the balance of nutrients in rice, a crop that billions of people rely on. (The paper, published in 1997, found a drop in zinc and iron.)

    Loladze’s paper was first to tie the impact of CO2 on plant quality to human nutrition. But he also raised more questions than he answered, arguing that there were fundamental holes in the research. If these nutritional shifts were happening up and down the food chain, the phenomenon needed to be measured and understood.

    Part of the problem, Loladze was finding, lay in the research world itself. Answering the question required an understanding of plant physiology, agriculture and nutrition-as well as a healthy dollop of math. He could do the math, but he was a young academic trying to establish himself, and math departments weren’t especially interested in solving problems in farming and human health. Loladze struggled to get funding to generate new data and continued to obsessively collect published data from researchers across the globe. He headed to the heartland to take an assistant professor position at the University of Nebraska-Lincoln. It was a major agricultural school, which seemed like a good sign, but Loladze was still a math professor. He was told he could pursue his research interests as long as he brought in funding, but he struggled. Biology grant makers said his proposals were too math-heavy; math grant makers said his proposals contained too much biology.

    “It was year after year, rejection after rejection,” he said. “It was so frustrating. I don’t think people grasp the scale of this.”

    It’s not just in the fields of math and biology that this issue has fallen through the cracks. To say that it’s little known that key crops are getting less nutritious due to rising CO2 is an understatement. It is simply not discussed in the agriculture, public health or nutrition communities. At all.

    When POLITICO contacted top nutrition experts about the growing body of research on the topic, they were almost universally perplexed and asked to see the research. One leading nutrition scientist at Johns Hopkins University said it was interesting, but admitted he didn’t know anything about it. He referred me to another expert. She said they didn’t know about the subject, either. The Academy of Nutrition and Dietetics, an association representing an army of nutrition experts across the country, connected me with Robin Foroutan, an integrative medicine nutritionist who was also not familiar with the research.

    “It’s really interesting, and you’re right, it’s not on many people’s radar,” wrote Foroutan, in an email, after being sent some papers on the topic. Foroutan said she would like to see a whole lot more data, particularly on how a subtle shift toward more carbohydrates in plants could affect public health.

    “We don’t know what a minor shift in the carbohydrate ratio in the diet is ultimately going to do,” she said, noting that the overall trend toward more starch and carbohydrate consumption has been associated with an increase in diet-related disease like obesity and diabetes. “To what degree would a shift in the food system contribute to that? We can’t really say.”

    Asked to comment for this story, Marion Nestle, a nutrition policy professor at New York University who’s one of the best-known nutrition experts in the country, initially expressed skepticism about the whole concept but offered to dig into a file she keeps on climate issues.

    After reviewing the evidence, she changed her tune. “I’m convinced,” she said, in an email, while also urging caution: It wasn’t clear whether CO2-driven nutrient depletion would have a meaningful impact on public health. We need to know a whole lot more, she said.

    Kristie Ebi, a researcher at the University of Washington who’s studied the intersection of climate change and global health for two decades, is one of a handful of scientists in the U.S. who is keyed into the potentially sweeping consequences of the CO2-nutrition dynamic, and brings it up in every talk she gives.

    “It’s a hidden issue,” Ebi said. “The fact that my bread doesn’t have the micronutrients it did 20 years ago-how would you know?”

    As Ebi sees it, the CO2-nutrition link has been slow to break through, much as it took the academic community a long time to start seriously looking at the intersection of climate and human health in general. “This is before the change,” she said. “This is what it looks like before the change.”

    LOLADZE’S EARLY PAPER raised some big questions that are difficult, but not impossible, to answer. How does rising atmospheric CO2 change how plants grow? How much of the long-term nutrient drop is caused by the atmosphere, and how much by other factors, like breeding?

    It’s also difficult, but not impossible, to run farm-scale experiments on how CO2 affects plants. Researchers use a technique that essentially turns an entire field into a lab. The current gold standard for this type of research is called a FACE experiment (for “free-air carbon dioxide enrichment”), in which researchers create large open-air structures that blow CO2 onto the plants in a given area. Small sensors keep track of the CO2 levels. When too much CO2 escapes the perimeter, the contraption puffs more into the air to keep the levels stable. Scientists can then compare those plants directly to others growing in normal air nearby.

    These experiments and others like them have shown scientists that plants change in important ways when they’re grown at elevated CO2 levels. Within the category of plants known as “C3”-which includes approximately 95 percent of plant species on earth, including ones we eat like wheat, rice, barley and potatoes-elevated CO2 has been shown to drive down important minerals like calcium, potassium, zinc and iron. The data we have, which look at how plants would respond to the kind of CO2 concentrations we may see in our lifetimes, show these important minerals drop by 8 percent, on average. The same conditions have been shown to drive down the protein content of C3 crops, in some cases significantly, with wheat and rice dropping 6 percent and 8 percent, respectively.

    Earlier this summer, a group of researchers published the first studies attempting to estimate what these shifts could mean for the global population. Plants are a crucial source of protein for people in the developing world, and by 2050, they estimate, 150 million people could be put at risk of protein deficiency, particularly in countries like India and Bangladesh. Researchers found a loss of zinc, which is particularly essential for maternal and infant health, could put 138 million people at risk. They also estimated that more than 1 billion mothers and 354 million children live in countries where dietary iron is projected to drop significantly, which could exacerbate the already widespread public health problem of anemia.

    There aren’t any projections for the United States, where we for the most part enjoy a diverse diet with no shortage of protein, but some researchers look at the growing proportion of sugars in plants and hypothesize that a systemic shift in plants could further contribute to our already alarming rates of obesity and cardiovascular disease.

    Another new and important strain of research on CO2 and plant nutrition is now coming out of the U.S. Department of Agriculture. Lewis Ziska, a plant physiologist at the Agricultural Research Service headquarters in Beltsville, Maryland, is drilling down on some of the questions that Loladze first raised 15 years ago with a number of new studies that focus on nutrition.

    Ziska devised an experiment that eliminated the complicating factor of plant breeding: He decided to look at bee food.

    Goldenrod, a wildflower many consider a weed, is extremely important to bees. It flowers late in the season, and its pollen provides an important source of protein for bees as they head into the harshness of winter. Since goldenrod is wild and humans haven’t bred it into new strains, it hasn’t changed over time as much as, say, corn or wheat. And the Smithsonian Institution also happens to have hundreds of samples of goldenrod, dating back to 1842, in its massive historical archive—which gave Ziska and his colleagues a chance to figure out how one plant has changed over time..

    They found that the protein content of goldenrod pollen has declined by a third since the industrial revolution—and the change closely tracks with the rise in CO2. Scientists have been trying to figure out why bee populations around the world have been in decline, which threatens many crops that rely on bees for pollination. Ziska’s paper suggested that a decline in protein prior to winter could be an additional factor making it hard for bees to survive other stressors.

    “We’re falling behind in our ability to intercede and begin to use the traditional agricultural tools, like breeding, to compensate,” he said. “Right now it can take 15 to 20 years before we get from the laboratory to the field.”

    AS LOLADZE AND others have found, tackling globe-spanning new questions that cross the boundaries of scientific fields can be difficult. There are plenty of plant physiologists researching crops, but most are dedicated to studying factors like yield and pest resistance—qualities that have nothing to do with nutrition. Math departments, as Loladze discovered, don’t exactly prioritize food research. And studying living things can be costly and slow: It takes several years and huge sums of money to get a FACE experiment to generate enough data to draw any conclusions.

    Despite these challenges, researchers are increasingly studying these questions, which means we may have more answers in the coming years. Ziska and Loladze, who now teaches math at Bryan College of Health Sciences in Lincoln, Nebraska, are collaborating with a coalition of researchers in China, Japan, Australia and elsewhere in the U.S. on a large study looking at rising CO2 and the nutritional profile of rice, one of humankind’s most important crops. Their study also includes vitamins, an important nutritional component, that to date has almost not been studied at all.

    USDA researchers also recently dug up varieties of rice, wheat and soy that USDA had saved from the 1950s and 1960s and planted them in plots around the U.S. where previous researchers had grown the same cultivars decades ago, with the aim of better understanding how today’s higher levels of CO2 affect them.

    In a USDA research field in Maryland, researchers are running experiments on bell peppers to measure how vitamin C changes under elevated CO2. They’re also looking at coffee to see whether caffeine declines. “There are lots of questions,” Ziska said as he showed me around his research campus in Beltsville. “We’re just putting our toe in the water.”

    Ziska is part of a small band of researchers now trying to measure these changes and figure out what it means for humans. Another key figure studying this nexus is Samuel Myers, a doctor turned climate researcher at Harvard University who leads the Planetary Health Alliance, a new global effort to connect the dots between climate science and human health.

    Myers is also concerned that the research community is not more focused on understanding the CO2-nutrition dynamic, since it’s a crucial piece of a much larger picture of how such changes might ripple through ecosystems. “This is the tip of the iceberg,” said Myers. “It’s been hard for us to get people to understand how many questions they should have.”

    In 2014, Myers and a team of other scientists published a large, data-rich study in the journal Nature that looked at key crops grown at several sites in Japan, Australia and the United States that also found rising CO2 led to a drop in protein, iron and zinc. It was the first time the issue had attracted any real media attention.

    “The public health implications of global climate change are difficult to predict, and we expect many surprises,” the researchers wrote. “The finding that raising atmospheric CO2 lowers the nutritional value of C3 crops is one such surprise that we can now better predict and prepare for.”

    The same year-in fact, on the same day-Loladze, then teaching math at the The Catholic University of Daegu in South Korea, published his own paper, the result of more than 15 years of gathering data on the same subject. It was the largest study in the world on rising CO2 and its impact on plant nutrients. Loladze likes to describe plant science as ““noisy”-research-speak for cluttered with complicating data, through which it can be difficult to detect the signal you’re looking for. His new data set was finally big enough to see the signal through the noise, to detect the “hidden shift,” as he put it.

    What he found is that his 2002 theory—or, rather, the strong suspicion he had articulated back then—appeared to be borne out. Across nearly 130 varieties of plants and more than 15,000 samples collected from experiments over the past three decades, the overall concentration of minerals like calcium, magnesium, potassium, zinc and iron had dropped by 8 percent on average. The ratio of carbohydrates to minerals was going up. The plants, like the algae, were becoming junk food.

    What that means for humans-whose main food intake is plants-is only just starting to be investigated. Researchers who dive into it will have to surmount obstacles like its low profile and slow pace, and a political environment where the word “climate” is enough to derail a funding conversation. It will also require entirely new bridges to be built in the world of science-a problem that Loladze himself wryly acknowledges in his own research. When his paper was finally published in 2014, Loladze listed his grant rejections in the acknowledgements.

    ———-

    “The great nutrient collapse” by HELENA BOTTEMILLER EVICH; Politico; 09/13/2017

    “These experiments and others like them have shown scientists that plants change in important ways when they’re grown at elevated CO2 levels. Within the category of plants known as “C3”-which includes approximately 95 percent of plant species on earth, including ones we eat like wheat, rice, barley and potatoes-elevated CO2 has been shown to drive down important minerals like calcium, potassium, zinc and iron. The data we have, which look at how plants would respond to the kind of CO2 concentrations we may see in our lifetimes, show these important minerals drop by 8 percent, on average. The same conditions have been shown to drive down the protein content of C3 crops, in some cases significantly, with wheat and rice dropping 6 percent and 8 percent, respectively.

    Less vitamins, minerals and protein. That’s what we should expect as CO2 levels continue to rise. And amazingly, only a handful of people appear to have actually been looking into this phenomena over the past couple of decades. And what they are finding is that, ““Every leaf and every grass blade on earth makes more and more sugars as CO2 levels keep rising…We are witnessing the greatest injection of carbohydrates into the biosphere in human history?[an] injection that dilutes other nutrients in our food supply”:


    Loladze was technically in the math department, but he loved biology and couldn’t stop thinking about this. The biologists had an idea of what was going on: The increased light was making the algae grow faster, but they ended up containing fewer of the nutrients the zooplankton needed to thrive. By speeding up their growth, the researchers had essentially turned the algae into junk food. The zooplankton had plenty to eat, but their food was less nutritious, and so they were starving.

    Loladze used his math training to help measure and explain the algae-zooplankton dynamic. He and his colleagues devised a model that captured the relationship between a food source and a grazer that depends on the food. They published that first paper in 2000. But Loladze was also captivated by a much larger question raised by the experiment: Just how far this problem might extend.

    “What struck me is that its application is wider,” Loladze recalled in an interview. Could the same problem affect grass and cows? What about rice and people? “It was kind of a watershed moment for me when I started thinking about human nutrition,” he said.

    In the outside world, the problem isn’t that plants are suddenly getting more light: It’s that for years, they’ve been getting more carbon dioxide. Plants rely on both light and carbon dioxide to grow. If shining more light results in faster-growing, less nutritious algae—junk-food algae whose ratio of sugar to nutrients was out of whack—then it seemed logical to assume that ramping up carbon dioxide might do the same. And it could also be playing out in plants all over the planet. What might that mean for the plants that people eat?

    What Loladze found is that scientists simply didn’t know. It was already well documented that CO2levels were rising in the atmosphere, but he was astonished at how little research had been done on how it affected the quality of the plants we eat. For the next 17 years, as he pursued his math career, Loladze scoured the scientific literature for any studies and data he could find. The results, as he collected them, all seemed to point in the same direction: The junk-food effect he had learned about in that Arizona lab also appeared to be occurring in fields and forests around the world. “Every leaf and every grass blade on earth makes more and more sugars as CO2 levels keep rising,” Loladze said. “We are witnessing the greatest injection of carbohydrates into the biosphere in human history?[an] injection that dilutes other nutrients in our food supply.”

    “Fortified”, low-carb foods are probably going to be a growth industry. Along with food grown in greenhouses with controlled CO2 levels. Which will of course be a luxury most people won’t be able to afford:


    Earlier this summer, a group of researchers published the first studies attempting to estimate what these shifts could mean for the global population. Plants are a crucial source of protein for people in the developing world, and by 2050, they estimate, 150 million people could be put at risk of protein deficiency, particularly in countries like India and Bangladesh. Researchers found a loss of zinc, which is particularly essential for maternal and infant health, could put 138 million people at risk. They also estimated that more than 1 billion mothers and 354 million children live in countries where dietary iron is projected to drop significantly, which could exacerbate the already widespread public health problem of anemia.

    There aren’t any projections for the United States, where we for the most part enjoy a diverse diet with no shortage of protein, but some researchers look at the growing proportion of sugars in plants and hypothesize that a systemic shift in plants could further contribute to our already alarming rates of obesity and cardiovascular disease.

    And look who is already getting impacted: the bees. Of course:

    Ziska devised an experiment that eliminated the complicating factor of plant breeding: He decided to look at bee food.

    Goldenrod, a wildflower many consider a weed, is extremely important to bees. It flowers late in the season, and its pollen provides an important source of protein for bees as they head into the harshness of winter. Since goldenrod is wild and humans haven’t bred it into new strains, it hasn’t changed over time as much as, say, corn or wheat. And the Smithsonian Institution also happens to have hundreds of samples of goldenrod, dating back to 1842, in its massive historical archive—which gave Ziska and his colleagues a chance to figure out how one plant has changed over time..

    They found that the protein content of goldenrod pollen has declined by a third since the industrial revolution—and the change closely tracks with the rise in CO2. Scientists have been trying to figure out why bee populations around the world have been in decline, which threatens many crops that rely on bees for pollination. Ziska’s paper suggested that a decline in protein prior to winter could be an additional factor making it hard for bees to survive other stressors.

    “They found that the protein content of goldenrod pollen has declined by a third since the industrial revolution—and the change closely tracks with the rise in CO2.”

    So that’s all something to considering when speculating about the various stresses climate change is going to impose on life on Earth: our CO2 habit is sapping the nutrition out of nature.

    And in related dire news, check out the latest climate change-related positive feedback loop researchers have uncovered: as land warms, it undergoes a period of increased CO2 emissions as the bacteria in the soil use the warmth to speed of the breakdown of organic compounds still trapped in the soil until the extra organic material is broken down and a new equilibrium is reached, at which point the CO2 emissions slow. In other words, the warming up period of climate changes includes an extra CO2 burst from the soil. Periodic pulses of CO2 as part of the process of reach that new equilibrium. And we have yet to really experience that massive soil CO2 pulse during this period of warming and the amount of CO2 the expect to be released from this phenomena over the next century could be the equivalent of the last 20 years of CO2 emissions from fossil fuels:

    Bloomberg

    There’s a Climate Bomb Under Your Feet
    Soil locks away carbon just as the oceans do. But that lock is getting picked as the atmosphere warms and development accelerates.

    By Eric Roston
    October 6, 2017, 9:08 AM CDT

    Long before most people ever heard of climate change, scientists divided a patch of Harvard University-owned forest in central Massachusetts into 18 identical 6-meter by 6-meter squares. A canopy of red maple and black oak trees hangs there, looming above the same stony soil tilled by colonial farmers. Rich in organic material, it was exactly what the researchers were looking for.

    They broke the land up into six blocks of three squares each. In every block, one square was left alone, one was threaded with heating cables that elevated its temperature 9 degrees Fahrenheit (5 degrees Celsius) above the surrounding area. The third square was threaded with cables but never turned on, as a control.

    That was 26 years ago. The purpose was to measure how carbon dioxide may escape from the earth as the atmosphere warms. What they found, published yesterday in the journal Science, may mean the accelerating catastrophe of global warming has been fueled in part by warm dirt. As the Earth heats up, microbes in the soil accelerate the breakdown of organic materials and move on to others that may have once been ignored, each time releasing carbon dioxide into the atmosphere.

    Extrapolating from their forest study, the researchers estimate that over this century the warming induced from global soil loss, at the rate they monitored, will be “equivalent to the past two decades of carbon emissions from fossil fuel burning and is comparable in magnitude to the cumulative carbon losses to the atmosphere due to human-driven land use change during the past two centuries.”

    The good news, however, is that the research community is now fully on the case. Over the past week, at least four high-profile papers largely funded by the U.S. government have contributed new evidence, observations, and insight into the role of soil and forests in the global carbon cycle—the flow of material in and out of land, air, life, and sea that’s currently broken and getting worse.

    From a technical perspective, what they’re talking about here is plain old dirt. Ground. Loam. Land. Trees and leaves. From a practical perspective, it’s something different entirely. Soil is also cotton, corn, soybean, wheat, oranges, cattle, and the rest of humanity’s food and fiber. When it’s healthy, it grows most everything we need. It absorbs and retains moisture that might otherwise flood valleys where people live. It also absorbs and retains carbon that might otherwise be heating up the atmosphere.

    The atmosphere gets all the attention in climate change, mostly because that’s where the warming happens. Even the oceans draw more concern than soil, especially when their warming temperatures help fuel massive storms and floods that kill humans and destroy communities. The seas hold 60 times more carbon than the atmosphere and absorb more than 90 percent of the heat that industrial pollution generates.

    The soil, meanwhile, has been mostly ignored until lately. It’s both hugely influential on global warming and something humanity has a good deal of control over. The top 3 meters or so of earth store more carbon than the entire atmosphere and all plants combined. Taking care of the planet’s soil is “critical for stabilizing atmospheric CO2 concentrations,” according to a synthesis by Stanford University’s Robert Jackson and five colleagues, published Thursday in Annual Review of Ecology, Evolution & Systematics.

    Scientists aren’t going to resolve the global carbon cycle down to the last atom soon. What the Annual Review authors do point out, though, is that land use and agricultural practices can simultaneously trap carbon in soil—helping the fight against warming—and improving yields for all the things humanity’s swelling population will need in coming decades. Reducing tillage and fallow time, managing grazing better, planting more legumes, and other practices all help keep more carbon in the ground.

    Back when the soil researchers were setting up their Harvard forest plots in 1991, Earth-system science and soil-health science were completely different fields. That’s been changing in ways that should be encouraged, according to another report, in Global Change Biology, also published Thursday. Binding scientists, policymakers, and land-owners together in conversation could have a significant effect on reducing global CO2, perhaps offsetting projected emissions from thawing permafrost in the rapidly melting, high-latitude Northern Hemisphere.

    The authors tout as a hopeful example the International Soil Carbon Network, a scientific initiative designed to pool data and identify gaps in monitoring and knowledge. “Soils have entered an ‘anthropogenic state,’ with most of the global surface area either directly managed by humans or indirectly influenced by human activities,” they write.

    Late last month, scientists from Woods Hole Research Center and Boston University published in Science an analysis of satellite data showing one of the most dramatic turnabouts in recent memory. Long thought of as sponges that suck in carbon dioxide from the atmosphere, tropical forests may actually be a source of emissions. Deforestation is obviously an enemy of forests; what the authors found was that forest degradation—losing healthy patches here or there to human or natural causes—is more damaging to carbon-soaking capacity than previously believed.

    The Harvard forest study leaves readers on a similarly thought-provoking note. The research itself found that soil loses its carbon in pulses of microbial activity. Microbes feast away on organic matter in elevated temperatures, chewing it down to carbon dioxide and emitting it. Then the soil settles down to emission rates seen in unheated areas, the microbes having exhausted their food source. After a time, new microbes move into the heated patches and eat up harder-to-digest material, such as lignin, the stuff that makes wood hard. Then they, too, get sated and die off or move on, reducing emission rates with them.

    Scientists have long been concerned that once humans kicked off warming of the atmosphere and seas, other parts of nature will take what we’ve begun and run with it. Some things are in our control—land use, pollution from fossil-fuel combustion. A global pulse in microbial carbon-munching, however, they write, “could be very difficult, if not impossible, to halt.”

    ———-

    “There’s a Climate Bomb Under Your Feet” by Eric Roston; Bloomberg; 10/06/2017

    “Scientists have long been concerned that once humans kicked off warming of the atmosphere and seas, other parts of nature will take what we’ve begun and run with it. Some things are in our control—land use, pollution from fossil-fuel combustion. A global pulse in microbial carbon-munching, however, they write, “could be very difficult, if not impossible, to halt.””

    An unstoppable global pulse in microbial carbon-munching caused by warming soil. Move over cow farts. And this just might be “equivalent to the past two decades of carbon emissions from fossil fuel burning and is comparable in magnitude to the cumulative carbon losses to the atmosphere due to human-driven land use change during the past two centuries”:


    That was 26 years ago. The purpose was to measure how carbon dioxide may escape from the earth as the atmosphere warms. What they found, published yesterday in the journal Science, may mean the accelerating catastrophe of global warming has been fueled in part by warm dirt. As the Earth heats up, microbes in the soil accelerate the breakdown of organic materials and move on to others that may have once been ignored, each time releasing carbon dioxide into the atmosphere.

    Extrapolating from their forest study, the researchers estimate that over this century the warming induced from global soil loss, at the rate they monitored, will be “equivalent to the past two decades of carbon emissions from fossil fuel burning and is comparable in magnitude to the cumulative carbon losses to the atmosphere due to human-driven land use change during the past two centuries.”

    That’s a lot of carbon. Extra carbon for extra-junk-foody plants everywhere.

    And if humanity ends up clear cutting even more forest to grow more food in order to deal with growing populations and collapsing nutrition, that’s going to mean extra carbon pulses:


    The hopeful calls for collaboration laid out in the Annual Review and Global Change Biology must nevertheless be tempered by the steady drumbeat of off-putting news from other parts of the Earth science research community.

    Late last month, scientists from Woods Hole Research Center and Boston University published in Science an analysis of satellite data showing one of the most dramatic turnabouts in recent memory. Long thought of as sponges that suck in carbon dioxide from the atmosphere, tropical forests may actually be a source of emissions. Deforestation is obviously an enemy of forests; what the authors found was that forest degradation—losing healthy patches here or there to human or natural causes—is more damaging to carbon-soaking capacity than previously believed.

    The Harvard forest study leaves readers on a similarly thought-provoking note. The research itself found that soil loses its carbon in pulses of microbial activity. Microbes feast away on organic matter in elevated temperatures, chewing it down to carbon dioxide and emitting it. Then the soil settles down to emission rates seen in unheated areas, the microbes having exhausted their food source. After a time, new microbes move into the heated patches and eat up harder-to-digest material, such as lignin, the stuff that makes wood hard. Then they, too, get sated and die off or move on, reducing emission rates with them.

    “Deforestation is obviously an enemy of forests; what the authors found was that forest degradation—losing healthy patches here or there to human or natural causes—is more damaging to carbon-soaking capacity than previously believed.”

    It’s the latest reminder that the solution to trashing the ecosystem and turning it into junk food isn’t going to be to simply clear cut more forests and make more farms. Although that’s probably what we’ll end up doing anyway.

    Posted by Pterrafractyl | October 9, 2017, 2:31 pm

Post a comment